Advanced Engineering Electromagnetics

Advanced Engineering Electromagnetics

Author: Constantine A. Balanis

Publisher: John Wiley & Sons

Published: 2012-01-24

Total Pages: 1040

ISBN-13: 0470589485

DOWNLOAD EBOOK

Balanis’ second edition of Advanced Engineering Electromagnetics – a global best-seller for over 20 years – covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Ready-made lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included.


Advanced Engineering Electromagnetics

Advanced Engineering Electromagnetics

Author: Constantine A. Balanis

Publisher: Wiley Global Education

Published: 2012-04-13

Total Pages: 1046

ISBN-13: 1118213483

DOWNLOAD EBOOK

Balanis' new edition of Advanced Engineering and Electromagnetics features new content on the basics of Metamaterials including figures to demonstrate their properties. Several small sections have been added on Mie series scattering by a PEC sphere; wedge diffraction by a wedge with surface impedances; and curve surface diffraction. Throughout the book, there are more helpful examples, end-of-chapter problems, and references as well as lecture notes in PowerPoint format. The revised edition also features MATLAB programs to animate some of the wave phenomena such as: propagation, reflection and refraction by planar interfaces; scattering by PEC circular cylinder, dielectric circular cylinder, dielectric coated PEC circular cylinder, and PEC sphere; and wedge defraction by 2-D PEC wedge.


Balanis' Advanced Engineering Electromagnetics

Balanis' Advanced Engineering Electromagnetics

Author: Constantine A. Balanis

Publisher: John Wiley & Sons

Published: 2024-01-24

Total Pages: 1140

ISBN-13: 1394180012

DOWNLOAD EBOOK

Balanis’ Advanced Engineering Electromagnetics The latest edition of the foundational guide to advanced electromagnetics Balanis’ third edition of Advanced Engineering Electromagnetics - a global best-seller for over 30 years - covers the advanced knowledge engineers involved in electromagnetics need to know, particularly as the topic relates to the fast-moving, continuously evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antennas, microwaves and wireless communications) points to an increase in the number of engineers needed to specialize in this field. Highlights of the 3rd Edition include: A new chapter, on Artificial Impedance Surfaces (AIS), contains material on current and advanced EM technologies, including the exciting and fascinating topic of metasurfaces for: Control and broadband RCS reduction using checkerboard designs. Optimization of antenna fundamental parameters, such as: input impedance, directivity, realized gain, amplitude radiation pattern. Leaky-wave antennas using 1-D and 2-D polarization diverse-holographic high impedance metasurfaces for antenna radiation control and optimization. Associated MATLAB programs for the design of checkerboard metasurfaces for RCS reduction, and metasurface printed antennas and holographic L WA for radiation control and optimization. Throughout the book, there are: Additional examples, numerous end-of-chapter problems, and PPT notes. Fifty three MATLAB computer programs for computations, graphical visualizations and animations. Nearly 4,500 multicolor PowerPoint slides are available for self-study or lecture use.


Applications of Advanced Electromagnetics

Applications of Advanced Electromagnetics

Author: Guennadi A. Kouzaev

Publisher: Springer Science & Business Media

Published: 2012-10-30

Total Pages: 542

ISBN-13: 3642303102

DOWNLOAD EBOOK

This text, directed to the microwave engineers and Master and PhD students, is on the use of electromagnetics to the development and design of advanced integrated components distinguished by their extended field of applications. The results of hundreds of authors scattered in numerous journals and conference proceedings are carefully reviewed and classed. Several chapters are to refresh the knowledge of readers in advanced electromagnetics. New techniques are represented by compact electromagnetic–quantum equations which can be used in modeling of microwave-quantum integrated circuits of future In addition, a topological method to the boundary value problem analysis is considered with the results and examples. One extended chapter is for the development and design of integrated components for extended bandwidth applications, and the technology and electromagnetic issues of silicon integrated transmission lines, transitions, filters, power dividers, directional couplers, etc are considered. Novel prospective interconnects based on different physical effects are reviewed as well. The ideas of topology is applicable to the electromagnetic signaling and computing, when the vector field maps can carry discrete information, and this area and the results in topological signaling obtained by different authors are analyzed, including the recently designed predicate logic processor operating spatially represented signal units. The book is rich of practical examples, illustrations, and references and useful for the specialists working at the edge of contemporary technology and electromagnetics.


Engineering Electromagnetics

Engineering Electromagnetics

Author: Nathan Ida

Publisher: Springer

Published: 2015-03-20

Total Pages: 1062

ISBN-13: 3319078062

DOWNLOAD EBOOK

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries. The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students. More than 400 examples and exercises, exercising every topic in the book Includes 600 end-of-chapter problems, many of them applications or simplified applications Discusses the finite element, finite difference and method of moments in a dedicated chapter


Advanced Electromagnetic Computation

Advanced Electromagnetic Computation

Author: Dikshitulu K. Kalluri

Publisher: CRC Press

Published: 2017-11-28

Total Pages: 385

ISBN-13: 1498733441

DOWNLOAD EBOOK

Advanced Electromagnetic Computation with MATLAB® discusses commercial electromagnetic software, widely used in the industry. Algorithms of Finite Differences, Moment method, Finite Element method and Finite Difference Time Domain method are illustrated. Hand-computed simple examples and MATLAB-coded examples are used to explain the concepts behind the algorithms. Case studies of practical examples from transmission lines, waveguides, and electrostatic problems are given so students are able to develop the code and solve the problems. Two new chapters including advanced methods based on perturbation techniques and three dimensional finite element examples from radiation scattering are included.


Advanced Electromagnetism: Foundations: Theory And Applications

Advanced Electromagnetism: Foundations: Theory And Applications

Author: Terence William Barrett

Publisher: World Scientific

Published: 1995-11-16

Total Pages: 807

ISBN-13: 9814501085

DOWNLOAD EBOOK

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.


Advanced Modeling in Computational Electromagnetic Compatibility

Advanced Modeling in Computational Electromagnetic Compatibility

Author: Dragan Poljak

Publisher: John Wiley & Sons

Published: 2007-02-26

Total Pages: 541

ISBN-13: 0470116870

DOWNLOAD EBOOK

This text combines the fundamentals of electromagnetics with numerical modeling to tackle a broad range of current electromagnetic compatibility (EMC) problems, including problems with lightning, transmission lines, and grounding systems. It sets forth a solid foundation in the basics before advancing to specialized topics, and allows readers to develop their own EMC computational models for applications in both research and industry.