Advanced Electron Microscopy Characterization of Multimetallic Nanoparticles

Advanced Electron Microscopy Characterization of Multimetallic Nanoparticles

Author: Subarna Raj Khanal

Publisher:

Published: 2014

Total Pages: 139

ISBN-13: 9781321194722

DOWNLOAD EBOOK

Research in noble metal nanoparticles has led to exciting progress in a versatile array of applications. For the purpose of better tailoring of nanoparticles activities and understanding the correlation between their structures and properties, control over the composition, shape, size and architecture of bimetallic and multimetallic nanomaterials plays an important role on revealing their new or enhanced functions for potentials application. Advance electron microscopy techniques were used to provide atomic scale insights into the structure-properties of different materials: PtPd, Au-Au 3 Cu, Cu-Pt, AgPd/Pt and AuCu/Pt nanoparticles. The objective of this work is to understand the physical and chemical properties of nanomaterials and describe synthesis, characterization, surface properties and growth mechanism of various bimetallic and multimetallic nanoparticles. The findings have provided us with novel and significant insights into the physical and chemical properties of noble metal nanoparticles. Different synthesis routes allowed us to synthesize bimetallic: Pt-Pd, Au-Au 3 Cu, Cu-Pt and trimetallic: AgPd/Pt, AuCu/Pt, core-shell and alloyed nanoparticles with monodispersed sizes, controlled shapes and tunable surface properties. For example, we have synthesized the polyhedral PtPd core-shell nanoparticles with octahedral, decahedral, and triangular plates. Decahedral PtPd core-shell structures are novel morphologies for this system. For the first time we fabricated that the Au core and Au 3 Cu alloyed shell nanoparticles passivated with CuS2 surface layers and characterized by Cs-corrected scanning transmission electron microscopy. The analysis of the high-resolution micrographs reveals that these nanoparticles have decahedral structure with shell periodicity, and that each of the particles is composed by Au core and Au 3 Cu ordered superlattice alloyed shell surrounded by CuS 2 surface layer. Additionally, we have described both experimental and theoretical methods of synthesis and growth mechanism of highly monodispersed Cu-Pt nanoclusters. The advance electron microscopy of microanalysis allowed us to study the distribution of Cu and Pt with atomistic resolution. The microanalysis revealed that Pt is embedded randomly in the Cu lattice. A novel grand canonical - Langevin dynamics simulation showed the formation of alloy structures in good agreement with the experimental evidence. Finally, we demonstrated the synthesis of AgPd-Pt trimetallic nanoparticles with two different morphologies: multiply twinned core-shell, and hollow particles. We also investigated the growth mechanism of the nanoparticles using grand canonical-Monte Carlo simulations. We found that the Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process and presenting very good agreement between the simulated structures and those observed experimentally. Similarly, we also investigated AuCu/Pt core-shell trimetallic nanoparticles, presenting new way to control the nanoparticles morphologies due to the presence of third metal (Pt). Where, we observed the Pt layers are overgrowth on the as prepared AuCu core by Frank-van der Merwe (FM) and Stranski-Krastanov (SK) growth modes. In addition, these nanostructure presents high index facet surfaces with {211} and (321} families, that are highly open structure surfaces and interesting for the catalytic applications. The results of these studies will be useful for the future applications and the design of advanced functional nanomaterials.


Advanced Electron Microscopy and Nanomaterials

Advanced Electron Microscopy and Nanomaterials

Author: Arturo Ponce

Publisher: Trans Tech Publications Ltd

Published: 2010-03-02

Total Pages: 152

ISBN-13: 3038133361

DOWNLOAD EBOOK

Selected, peer reviewed papers from the First Joint Advanced Electron Microscopy School for Nanomaterials and the Workshop on Nanomaterials (AEM-NANOMAT’09), Saltillo (Coahuila) México, September 29th-October 2nd, 2009


Transmission Electron Microscopy Characterization of Nanomaterials

Transmission Electron Microscopy Characterization of Nanomaterials

Author: Challa S.S.R. Kumar

Publisher: Springer Science & Business Media

Published: 2013-12-09

Total Pages: 718

ISBN-13: 3642389341

DOWNLOAD EBOOK

Third volume of a 40volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Transmission electron microscopy characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.


Advanced Electron Microscopy Characterization of Nanomaterials for Catalysis

Advanced Electron Microscopy Characterization of Nanomaterials for Catalysis

Author:

Publisher:

Published: 2017

Total Pages: 37

ISBN-13:

DOWNLOAD EBOOK

Transmission electron microscopy (TEM) has become one of the most powerful techniques in the fields of material science, inorganic chemistry and nanotechnology. In terms of resolutions, advanced TEM may reach a high spatial resolution of 0.05 nm, a high energy-resolution of 7 meV. In addition, in situ TEM can help researcher to image the process happened within 1 ms. This paper reviews the recent technical approaches of applying advanced TEM characterization on nanomaterials for catalysis. The text is organized according to the demanded information of nanocrystals from the perspective of application: for example, size, composition, phase, strain, and morphology. The electron beam induced effect and in situ TEM are also introduced. As a result, I hope this review can help the scientists in related fields to take advantage of advanced TEM to their own researches.


Advanced Transmission Electron Microscopy

Advanced Transmission Electron Microscopy

Author: Francis Leonard Deepak

Publisher: Springer

Published: 2015-06-05

Total Pages: 281

ISBN-13: 3319151770

DOWNLOAD EBOOK

This book highlights the current understanding of materials in the context of new and continuously emerging techniques in the field of electron microscopy. The authors present applications of electron microscopic techniques in characterizing various well-known & new nanomaterials. The applications described include both inorganic nanomaterials as well as organic nanomaterials.


Electron Microscopy Characterization of Nanoparticles for Biomedical Application

Electron Microscopy Characterization of Nanoparticles for Biomedical Application

Author: Yitian Zeng

Publisher:

Published: 2021

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Over the past two decades, nanotechnology has demonstrated great potential in the field of biology and medicine. Nanomaterials, such as gold nanoparticles, with their superior chemical and physical properties, are widely used in a variety of biomedical research, ways ranging from cancer early detection (e.g. liquid biopsy) to treatment (e.g. hyperthermia therapy). On the other hand, advances in nano characterization techniques have enabled new investigations of naturally occurring nanoscale features in the body, in order to understand the pathological processes associated with them. This dissertation describes the use of advanced electron microscopy to characterize nanomaterials of relevance to the field of medicine. Some nanoparticles are lithographically fabricated, some are chemically synthesized, and others are directly extracted from tissues and cells. The morphological, crystallographic, chemical, optical and other physical properties of these nanoparticles are evaluated using a combination of imaging, diffraction and advanced spectroscopy techniques in a transmission electron microscope (TEM) and scanning electron microscope (SEM). In the first part of this work, surface enhanced Raman scattering (SERS) gold nanoparticles were optimized for sensitive detection of tumors by correlating localized surface plasmon resonances (LSPR) with surface enhancement. Electron beam lithography was used to prototype gold nanostructures with a wide variety of shapes, size, interspacing and in different dielectric environments. The LSPR of these structures were measured using electron energy loss spectroscopy (EELS) in a transmission electron microscope operated in scanning mode (STEM) with monochromation. It is found that nanoparticle size and dielectric environment have the most significant effects on localized surface plasmons, which is collective oscillation modes of the free electron gas at the metal surface. By contrast, interspacing has a weaker influence on surface plasmons for the range studied in this dissertation. Larger nanoparticle size and higher dielectric constant result in lower surface plasmon energies. The novelty of this work is that the LSPR from various nanostructure arrays were correlated with their Raman spectra acquired at different illuminating laser energies after incubation with a Raman dye. It is demonstrated that the largest Raman signal intensities are obtained when the illuminating laser energy coincides with, or is slightly higher than, the gold nanoparticle surface plasmon resonance energies (e.g. 90 nm diameter nanodisc particles with a LSPR energy of 1.94 eV show strongest Raman signal enhancement under a 638 nm (1.94 eV) wavelength laser excitation). By comparing various nanostructure shapes with similar surface plasmon energies, it is shown that sharper nanostructures tend to exhibit stronger surface enhancement. This information is useful in designing nanoparticle combinations to generate the largest SERS enhancement for detection of early stage medical problems such as cancer. The second part of this work is focused on naturally occurring particles, in particular, iron deposits in the hippocampal region of a brain to understand the pathological processes related to Alzheimer's diseases (AD). Recent work on iron accumulation in AD brains has led researchers to hypothesize that the oxidation state of iron may be related to neurodegeneration because ferrous iron, compared with ferric iron, may cause oxidative damage and antioxidant depletion on neurons. First, iron rich regions from AD brain tissues were located using correlative magnetic resonance imaging (MRI), optical microscopy (OM), SEM and energy dispersive spectroscopy (EDS). Cross-sections of tissue containing iron deposits were then extracted using focused ion beam (FIB) and subsequently thinned to make them electron transparent. The relative concentrations of ferric and ferrous ions within the iron deposits were determined by studying the intensity ratios of Fe L3:L2 edges from the energy loss near edge structure (ELNES) of the Fe L edge using monochromated STEM-EELS as above. Massive correlation across biological and physical microscopy and spectroscopy techniques was demonstrated for the first time in this work. These observations and insights provide supporting evidence of ferrous iron as being possibly associated with AD. The third and final section addresses characterization of artificial and natural nanoparticle composites. These hybrid nanoparticles, fabricated via a simple extrusion method, can greatly increase the target specificity and cellular uptake in various biomedical applications such as cancer imaging and drug delivery. A negative staining technique was utilized to provide contrast of biological components of these nanoparticles in TEM, and specific proteins of interest were labeled with antibodies conjugated to 100 nm diameter gold iron oxide nanoparticles (GIONs). The combination of superior magnetic, photonic and other physical properties from artificial nanoparticles, along with cellular specificity and biological compatibility from natural nanoparticles makes these hybrid nanoparticles useful for multi-modality imaging and possible medical treatment. Overall, electron microscopy is a versatile and powerful methodology for characterization of a wide variety of nanomaterials. Advanced microscopic and spectroscopic techniques such as monochromatic STEM-EELS and EDS, which are rarely used in the life sciences, have great potential in bringing unique insight into biomedical research.


Structure Analysis of Advanced Nanomaterials

Structure Analysis of Advanced Nanomaterials

Author: Takeo Oku

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-10-09

Total Pages: 277

ISBN-13: 3110388049

DOWNLOAD EBOOK

High-resolution electron microscopy allows the imaging of the crystallographic structure of a sample at an atomic scale. It is a valuable tool to study nanoscale properties of crystalline materials such as superconductors, semiconductors, solar cells, zeolite materials, carbon nanomaterials or BN nanotubes.


Scanning Transmission Electron Microscopy

Scanning Transmission Electron Microscopy

Author: Alina Bruma

Publisher:

Published: 2020-12

Total Pages: 150

ISBN-13: 9780429243011

DOWNLOAD EBOOK

Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science-derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.


Microscopy Methods in Nanomaterials Characterization

Microscopy Methods in Nanomaterials Characterization

Author: Sabu Thomas

Publisher: Elsevier

Published: 2017-05-17

Total Pages: 434

ISBN-13: 0323461476

DOWNLOAD EBOOK

Microscopy Methods in Nanomaterials Characterization fills an important gap in the literature with a detailed look at microscopic and X-ray based characterization of nanomaterials. These microscopic techniques are used for the determination of surface morphology and the dispersion characteristics of nanomaterials. This book deals with the detailed discussion of these aspects, and will provide the reader with a fundamental understanding of morphological tools, such as instrumentation, sample preparation and different kinds of analyses, etc. In addition, it covers the latest developments and trends morphological characterization using a variety of microscopes. Materials scientists, materials engineers and scientists in related disciplines, including chemistry and physics, will find this to be a detailed, method-orientated guide to microscopy methods of nanocharacterization. Takes a method-orientated approach that includes case studies that illustrate how to carry out each characterization technique Discusses the advantages and disadvantages of each microscopy characterization technique, giving the reader greater understanding of conditions for different techniques Presents an in-depth discussion of each technique, allowing the reader to gain a detailed understanding of each


Advanced Transmission Electron Microscopy

Advanced Transmission Electron Microscopy

Author: Jian Min Zuo

Publisher: Springer

Published: 2016-10-26

Total Pages: 741

ISBN-13: 1493966073

DOWNLOAD EBOOK

This volume expands and updates the coverage in the authors' popular 1992 book, Electron Microdiffraction. As the title implies, the focus of the book has changed from electron microdiffraction and convergent beam electron diffraction to all forms of advanced transmission electron microscopy. Special attention is given to electron diffraction and imaging, including high-resolution TEM and STEM imaging, and the application of these methods to crystals, their defects, and nanostructures. The authoritative text summarizes and develops most of the useful knowledge which has been gained over the years from the study of the multiple electron scattering problem, the recent development of aberration correctors and their applications to materials structure characterization, as well as the authors' extensive teaching experience in these areas. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience is ideal for use as an advanced undergraduate or graduate level text in support of course materials in Materials Science, Physics or Chemistry departments.