Advanced Dynamics Modeling, Duality and Control of Robotic Systems

Advanced Dynamics Modeling, Duality and Control of Robotic Systems

Author: Edward Y.L. Gu

Publisher: CRC Press

Published: 2021-09-23

Total Pages: 321

ISBN-13: 100045486X

DOWNLOAD EBOOK

This book provides detailed fundamental theoretical reviews and preparations necessary for developing advanced dynamics modeling and control strategies for various types of robotic systems. This research book specifically addresses and discusses the uniqueness issue of representing orientation or rotation, and further proposes an innovative isometric embedding approach. The novel approach can not only reduce the dynamic formulation for robotic systems into a compact form, but it also offers a new way to realize the orientational trajectory-tracking control procedures. In addition, the book gives a comprehensive introduction to fundamentals of mathematics and physics that are required for modeling robot dynamics and developing effective control algorithms. Many computer simulations and realistic 3D animations to verify the new theories and algorithms are included in the book as well. It also presents and discusses the principle of duality involved in robot kinematics, statics, and dynamics. The duality principle can guide the dynamics modeling and analysis into a right direction for a variety of robotic systems in different types from open serial-chain to closed parallel-chain mechanisms. It intends to serve as a diversified research reference to a wide range of audience, including undergraduate juniors and seniors, graduate students, researchers, and engineers interested in the areas of robotics, control and applications.


Advanced Dynamics Modeling, Duality and Control of Robotic Systems

Advanced Dynamics Modeling, Duality and Control of Robotic Systems

Author: Edward Y.L. Gu

Publisher: CRC Press

Published: 2021-09-24

Total Pages: 244

ISBN-13: 1000454886

DOWNLOAD EBOOK

This book provides detailed fundamental theoretical reviews and preparations necessary for developing advanced dynamics modeling and control strategies for various types of robotic systems. This research book specifically addresses and discusses the uniqueness issue of representing orientation or rotation, and further proposes an innovative isometric embedding approach. The novel approach can not only reduce the dynamic formulation for robotic systems into a compact form, but it also offers a new way to realize the orientational trajectory-tracking control procedures. In addition, the book gives a comprehensive introduction to fundamentals of mathematics and physics that are required for modeling robot dynamics and developing effective control algorithms. Many computer simulations and realistic 3D animations to verify the new theories and algorithms are included in the book as well. It also presents and discusses the principle of duality involved in robot kinematics, statics, and dynamics. The duality principle can guide the dynamics modeling and analysis into a right direction for a variety of robotic systems in different types from open serial-chain to closed parallel-chain mechanisms. It intends to serve as a diversified research reference to a wide range of audience, including undergraduate juniors and seniors, graduate students, researchers, and engineers interested in the areas of robotics, control and applications.


Dynamics and Control of Robotic Systems

Dynamics and Control of Robotic Systems

Author: Andrew J. Kurdila

Publisher: John Wiley & Sons

Published: 2019-10-29

Total Pages: 700

ISBN-13: 1119524954

DOWNLOAD EBOOK

A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.


Robot Modeling and Control

Robot Modeling and Control

Author: Mark W. Spong

Publisher: John Wiley & Sons

Published: 2005-11-18

Total Pages: 1

ISBN-13: 0471649902

DOWNLOAD EBOOK

"The coverage is unparalleled in both depth and breadth. No other text that I have seen offers a better complete overview of modern robotic manipulation and robot control." -- Bradley Bishop, United States Naval Academy Based on the highly successful classic, Robot Dynamics and Control, by Spong and Vidyasagar (Wiley, 1989), Robot Modeling and Control offers a thoroughly up-to-date, self-contained introduction to the field. The text presents basic and advanced material in a style that is at once readable and mathematically rigorous. Key Features * A step-by-step computational approach helps you derive and compute the forward kinematics, inverse kinematics, and Jacobians for the most common robot designs. * Detailed coverage of vision and visual servo control enables you to program robots to manipulate objects sensed by cameras. * An entire chapter on dynamics prepares you to compute the dynamics of the most common manipulator designs. * The most common motion planning and trajectory generation algorithms are presented in an elementary style. * The comprehensive treatment of motion and force control includes both basic and advanced methods. * The text's treatment of geometric nonlinear control is more readable than in more advanced texts. * Many worked examples and an extensive list of problems illustrate all aspects of the theory. About the authors Mark W. Spong is Donald Biggar Willett Professor of Engineering at the University of Illinois at Urbana-Champaign. Dr. Spong is the 2005 President of the IEEE Control Systems Society and past Editor-in-Chief of the IEEE Transactions on Control Systems Technology. Seth Hutchinson is currently a Professor at the University of Illinois in Urbana-Champaign, and a senior editor of the IEEE Transactions on Robotics and Automation. He has published extensively on the topics of robotics and computer vision. Mathukumalli Vidyasagar is currently Executive Vice President in charge of Advanced Technology at Tata Consultancy Services (TCS), India's largest IT firm. Dr. Vidyasagar was formerly the director of the Centre for Artificial Intelligence and Robotics (CAIR), under Government of India's Ministry of Defense.


Control and Dynamic Systems V40: Advances in Robotic Systems Part 2 of 2

Control and Dynamic Systems V40: Advances in Robotic Systems Part 2 of 2

Author: C.T. Leonides

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 432

ISBN-13: 0323162886

DOWNLOAD EBOOK

Advances in Robotic Systems, Part 2 is the second of a companion set of two volumes on advances in robotic systems dynamics and control. This book comprises nine chapters, with the first focusing on kinesthetic feedback techniques in teleoperated systems. The succeeding chapters then delve into topics such as parallel algorithms and fault-tolerant reconfigurable architecture for robot kinematics and dynamics computations; trajectory planning for robot control; and a control systems perspective. Other chapters cover simplified techniques for adaptive control of robotic systems; theory and applications of configuration control for redundant manipulators; nonlinear feedback for force control of robot manipulators; systolic architectures for dynamic control of manipulators; inverse dynamics; and forward dynamics. This book will be of interest to practitioners in the fields of computer science, systems science, and mathematics.


Dynamics of Robots with Contact Tasks

Dynamics of Robots with Contact Tasks

Author: M. Vukobratovic

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 258

ISBN-13: 9401703973

DOWNLOAD EBOOK

As robots are becoming more and more sophisticated the interest in robot dynamics is increasing. Within this field, contact problems are among the most interesting, since contacts are present in almost any robot task and introduce serious complexity to system dynamics, strongly influencing robot behavior. The book formulates dynamic models of robot interaction with different kinds of environment, from pure geometrical constraints to complex dynamic environments. It provides a number of examples. Dynamic modeling is the primary interest of the book but control issues are treated as well. Because dynamics and contact control tasks are strongly related the authors also provide a brief description of relevant control issues. The book will be of interest to engineers working in research and development in robotics and automation and to both graduate and postgraduate students. The work will also be valuable to readers involved in manufacturing, robotics, automation, computer and control engineering.


Control and Dynamic Systems V39: Advances in Robotic Systems Part 1 of 2

Control and Dynamic Systems V39: Advances in Robotic Systems Part 1 of 2

Author: C.T. Leonides

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 485

ISBN-13: 0323163033

DOWNLOAD EBOOK

Advances in Robotic Systems, Part 1 shows how the activity in robotic systems has increased significantly over the past decade. Major centers of research and development in robotic systems were established on the international scene, and these became focal points for the brilliant research efforts of many academicians and industrial professionals. The systems aspects of robotics, in general, and of robot control, in particular, are manifested through a number of technical facts. This book comprises 10 chapters, with the first focusing on applications of neural networks to robotics. The following chapters then discuss a unified approach to kinematic modeling, identification and compensation for robot calibration; nonlinear control algorithms in robotic systems; and kinematic and dynamic task space motion planning for robot control. Other chapters cover discrete kinematic modeling techniques in Cartesian space for robotic system; force distribution algorithms for multifingered grippers; frequency analysis for a discrete-time robot system; minimum cost trajectory planning for industrial robots; tactile sensing techniques in robotic systems; and sensor data fusion in robotic systems. This book will be of interest to practitioners in the fields of computer science, systems science, and mathematics.


Lyapunov-Based Control of Robotic Systems

Lyapunov-Based Control of Robotic Systems

Author: Aman Behal

Publisher: CRC Press

Published: 2009-12-17

Total Pages: 392

ISBN-13: 1000654435

DOWNLOAD EBOOK

Lyapunov-Based Control of Robotic Systems describes nonlinear control design solutions for problems that arise from robots required to interact with and manipulate their environments. Since most practical scenarios require the design of nonlinear controllers to work around uncertainty and measurement-related issues, the authors use Lyapunov's direc


Mastering Robot dynamics

Mastering Robot dynamics

Author: Cybellium Ltd

Publisher: Cybellium Ltd

Published:

Total Pages: 302

ISBN-13:

DOWNLOAD EBOOK

Embark on an Enlightening Journey to "Mastering Robot Dynamics" In a world driven by automation and robotics, mastering the intricacies of robot dynamics is pivotal for creating advanced robotic systems that move with precision and intelligence. "Mastering Robot Dynamics" is your ultimate guide to navigating the complex world of robot motion, control, and manipulation. Whether you're an engineer, researcher, robotics enthusiast, or student, this book equips you with the knowledge and skills needed to excel in designing and controlling sophisticated robotic mechanisms. About the Book: "Mastering Robot Dynamics" takes you on a transformative journey through the intricacies of robot motion and control, from foundational concepts to advanced techniques. From kinematics and dynamics to trajectory planning and real-time control, this book covers it all. Each chapter is meticulously designed to provide both a deep understanding of the principles and practical applications in real-world robotic scenarios. Key Features: · Foundational Understanding: Build a solid foundation by comprehending the core principles of robot dynamics, including kinematics, inertia, and motion equations. · Robot Kinematics: Explore forward and inverse kinematics, understanding how robots move and calculating joint configurations. · Robot Dynamics: Dive into the study of forces, torques, and motion equations, learning how robots interact with their environments. · Trajectory Planning: Master the art of planning robot paths and trajectories, considering constraints and optimizing motion sequences. · Sensors and Perception: Gain insights into sensor integration, perception systems, and how robots interact with the world through feedback. · Motion Control: Learn about different types of control strategies, from PID control to advanced techniques like model predictive control. · Collision Avoidance: Understand methods for detecting and avoiding collisions, ensuring safety and reliability in robot operations. · Robot Manipulation: Explore techniques for manipulating objects, including grasp planning, manipulation tasks, and robotic arms. · Challenges and Trends: Discover challenges in robot dynamics, from sensor noise to complex control algorithms, and explore emerging trends shaping the future of robotics. Who This Book Is For: "Mastering Robot Dynamics" is designed for engineers, researchers, robotics enthusiasts, students, and anyone passionate about robotics. Whether you're aiming to enhance your skills or embark on a journey toward becoming a robotics expert, this book provides the insights and tools to navigate the complexities of designing and controlling robotic systems. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com


Dynamics of Tree-Type Robotic Systems

Dynamics of Tree-Type Robotic Systems

Author: Suril Vijaykumar Shah

Publisher: Springer Science & Business Media

Published: 2012-12-14

Total Pages: 256

ISBN-13: 9400750064

DOWNLOAD EBOOK

This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.