During the last several years, significant efforts have been directed toward the development of ultra-clean, gasoline-powered vehicles in the automotive industry. With the coming of increasingly stringent emissions legislation, this development is more critical now than ever before. This has lead to an increase in the technical information available. Advanced Developments in Ultra-Clean Gasoline-Powered Vehicles provides the reader with technical information including a description of fundamental processes, insight on technical issues, key trends, and future R&D directions.
Dr. Fuquan (Frank) Zhao and experts in the field address a broad spectrum of key research and development issues in the rapidly progressing area of near-zero-emission gasoline-powered vehicles. Written in response to the increasingly stringent emissions legislation, this book provides the reader with a concise introduction to technology developments in near-zero-emission gasoline-powered vehicles. The material reflects global technical initiatives within the automotive and research communities. In all, this book contains more than 450 pages, with nearly 200 descriptive diagrams and/or images. It will serve as a valuable desk reference and provide the basics for those who are interested in understanding this advancing technology.
This book presents the papers from the Innovations in Fuel Economy and Sustainable Road Transport conference, held in Pune, India, 8-9 November, 2011. Papers examine advances in powertrain, alternative fuels, lightweight vehicles, electric vehicles and hybrid vehicles. An international assembly of senior industry representatives provide insight into research and technological advances in low carbon technology sustainability for road transport, helping towards achieving stringent emissions standards and continual improvements in fuel economy efficiency, all in an expanding Indian market. These technical papers from industry and academia discuss the developments and research of leading organisations. - Discusses maximising powertrain performance for a low carbon agenda - Provides readers with an understanding of the latest developments in alternative fuels - Examines the future landscape for the implementation and development of electric vehicles
The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems. A profound increase in the level of research and development of this technology has occurred in the last decade. This book gathers contributions from experts in both industry and academia, providing a basic introduction to the state-of-the-art of HCCI technology, a critical review of current HCCI research and development efforts, and perspective for the future. Chapters cover: Gasoline-Fueled HCCI Engines; Diesel-Fueled HCCI Engines; Alternative Fuels and Fuel Additives for HCCI Engines; HCCI Control and Operating Range Extension; Kinetics of HCCI Combustion; HCCI Engine Modeling Approaches.In addition to the extensive overview of terminology, physical processes, and future needs, each chapter also features select SAE papers (a total of 41 are included in the book), as well as a comprehensive list of references related to the subjects. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues provides a valuable base of information for those interested in learning about this rapidly-progressing technology which has the potential to enhance fuel economy and reduce emissions.
Among the various factors greatly influencing the development process of future powertrain technologies, the trends in climate change and digitalization are of huge public interest. To handle these trends, new disruptive technologies are integrated into the development process. They open up space for diverse research which is distributed over the entire vehicle design process. This book contains recent research articles which incorporate results for selecting and designing powertrain topology in consideration of the vehicle operating strategy as well as results for handling the reliability of new powertrain components. The field of investigation spans from the identification of ecologically optimal transformation of the existent vehicle fleet to the development of machine learning-based operating strategies and the comparison of complex hybrid electric vehicle topologies to reduce CO2 emissions.
This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.
The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.
Electrification is an evolving paradigm shift in the transportation industry toward more efficient, higher performance, safer, smarter, and more reliable vehicles. There is in fact a clear trend to move from internal combustion engines (ICEs) to more integrated electrified powertrains. Providing a detailed overview of this growing area, Advanced Electric Drive Vehicles begins with an introduction to the automotive industry, an explanation of the need for electrification, and a presentation of the fundamentals of conventional vehicles and ICEs. It then proceeds to address the major components of electrified vehicles—i.e., power electronic converters, electric machines, electric motor controllers, and energy storage systems. This comprehensive work: Covers more electric vehicles (MEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), range-extended electric vehicles (REEVs), and all-electric vehicles (EVs) including battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) Describes the electrification technologies applied to nonpropulsion loads, such as power steering and air-conditioning systems Discusses hybrid battery/ultra-capacitor energy storage systems, as well as 48-V electrification and belt-driven starter generator systems Considers vehicle-to-grid (V2G) interface and electrical infrastructure issues, energy management, and optimization in advanced electric drive vehicles Contains numerous illustrations, practical examples, case studies, and challenging questions and problems throughout to ensure a solid understanding of key concepts and applications Advanced Electric Drive Vehicles makes an ideal textbook for senior-level undergraduate or graduate engineering courses and a user-friendly reference for researchers, engineers, managers, and other professionals interested in transportation electrification.