Advanced Control of Electrical Drives and Power Electronic Converters

Advanced Control of Electrical Drives and Power Electronic Converters

Author: Jacek Kabziński

Publisher: Springer

Published: 2016-09-30

Total Pages: 391

ISBN-13: 3319457357

DOWNLOAD EBOOK

This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.


Advanced Electrical Drives

Advanced Electrical Drives

Author: Rik De Doncker

Publisher: Springer Science & Business Media

Published: 2010-11-30

Total Pages: 462

ISBN-13: 9400701810

DOWNLOAD EBOOK

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.


Advanced Electrical Drives

Advanced Electrical Drives

Author: Rik W. De Doncker

Publisher: Springer Nature

Published: 2020-08-21

Total Pages: 419

ISBN-13: 3030489779

DOWNLOAD EBOOK

This book provides a unique approach to derive model-based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for the generalized modeling approach of rotating field machines, which leads to the development of universal field-oriented control algorithms. Contrary to this, direct torque control algorithms, using observer-based methods, are developed for switched reluctance machines. Tutorials are included at the end of each chapter, and the reader is encouraged to execute these tutorials in order to gain familiarity with the dynamic behavior of drive systems. This updated edition uses PLECS® simulation and vector processing tools that were specifically adopted for the purpose of these hands-on tutorials. Hence, Advanced Electrical Drives encourages “learning by doing” and the experienced drive specialist may find the simulation tools useful to design high-performance torque controllers. Although it is a powerful reference in its own right, when used in conjunction with the companion texts Fundamentals of Electrical Drives and Applied Control of Electrical Drives, this book provides a uniquely comprehensive reference set that takes readers all the way from understanding the basics of how electrical drives work, to deep familiarity with advanced features and models, to a mastery of applying the concepts to actual hardware in practice. Teaches readers to perform insightful analysis of AC electrical machines and drives; Introduces new modeling methods and modern control techniques for switched reluctance drives; Updated to use PLECS® simulation tools for modeling electrical drives, including new and more experimental results; Numerous tutorials at end of each chapter to learn by doing, step-by-step; Includes extra material featuring “build and play” lab modules, for lectures and self-study.


Advanced Control Systems for Electric Drives

Advanced Control Systems for Electric Drives

Author: Adel Merabet

Publisher: MDPI

Published: 2020-12-07

Total Pages: 342

ISBN-13: 3039436996

DOWNLOAD EBOOK

This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives.


AC Electric Motors Control

AC Electric Motors Control

Author: Fouad Giri

Publisher: John Wiley & Sons

Published: 2013-03-25

Total Pages: 604

ISBN-13: 1118574249

DOWNLOAD EBOOK

The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.


Analysis and Control of Electric Drives

Analysis and Control of Electric Drives

Author: Ned Mohan

Publisher: John Wiley & Sons

Published: 2020-08-27

Total Pages: 560

ISBN-13: 1119584558

DOWNLOAD EBOOK

A guide to drives essential to electric vehicles, wind turbines, and other motor-driven systems Analysis and Control of Electric Drives is a practical and comprehensive text that offers a clear understanding of electric drives and their industrial applications in the real-world including electric vehicles and wind turbines. The authors—noted experts on the topic—review the basic knowledge needed to understand electric drives and include the pertinent material that examines DC and AC machines in steady state using a unique physics-based approach. The book also analyzes electric machine operation under dynamic conditions, assisted by Space Vectors. The book is filled with illustrative examples and includes information on electric machines with Interior Permanent Magnets. To enhance learning, the book contains end-of-chapter problems and all topics covered use computer simulations with MATLAB Simulink® and Sciamble® Workbench software that is available free online for educational purposes. This important book: Explores additional topics such as electric machines with Interior Permanent Magnets Includes multiple examples and end-of-chapter homework problems Provides simulations made using MATLAB Simulink® and Sciamble® Workbench, free software for educational purposes Contains helpful presentation slides and Solutions Manual for Instructors; simulation files are available on the associated website for easy implementation A unique feature of this book is that the simulations in Sciamble® Workbench software can seamlessly be used to control experiments in a hardware laboratory Written for undergraduate and graduate students, Analysis and Control of Electric Drives is an essential guide to understanding electric vehicles, wind turbines, and increased efficiency of motor-driven systems.


Control of Electric Machine Drive Systems

Control of Electric Machine Drive Systems

Author: Seung-Ki Sul

Publisher: John Wiley & Sons

Published: 2011-04-20

Total Pages: 350

ISBN-13: 1118099567

DOWNLOAD EBOOK

A unique approach to sensorless control and regulator design of electric drives Based on the author's vast industry experience and collaborative works with other industries, Control of Electric Machine Drive Systems is packed with tested, implemented, and verified ideas that engineers can apply to everyday problems in the field. Originally published in Korean as a textbook, this highly practical updated version features the latest information on the control of electric machines and apparatus, as well as a new chapter on sensorless control of AC machines, a topic not covered in any other publication. The book begins by explaining the features of the electric drive system and trends of development in related technologies, as well as the basic structure and operation principles of the electric machine. It also addresses steady state characteristics and control of the machines and the transformation of physical variables of AC machines using reference frame theory in order to provide a proper foundation for the material. The heart of the book reviews several control algorithms of electric machines and power converters, explaining active damping and how to regulate current, speed, and position in a feedback manner. Seung-Ki Sul introduces tricks to enhance the control performance of the electric machines, and the algorithm to detect the phase angle of an AC source and to control DC link voltages of power converters. Topics also covered are: Vector control Control algorithms for position/speed sensorless drive of AC machines Methods for identifying the parameters of electric machines and power converters The matrix algebra to model a three-phase AC machine in d-q-n axes Every chapter features exercise problems drawn from actual industry experience. The book also includes more than 300 figures and offers access to an FTP site, which provides MATLAB programs for selected problems. The book's practicality and realworld relatability make it an invaluable resource for professionals and engineers involved in the research and development of electric machine drive business, industrial drive designers, and senior undergraduate and graduate students. To obtain instructor materials please send an email to [email protected] To visit this book's FTP site to download MATLAB codes, please click on this link: ftp://ftp.wiley.com/public/sci_tech_med/electric_machine/ MATLAB codes are also downloadable from Wiley Booksupport Site at http://booksupport.wiley.com


Digital Control of Electrical Drives

Digital Control of Electrical Drives

Author: Slobodan N. Vukosavic

Publisher: Springer Science & Business Media

Published: 2007-07-26

Total Pages: 360

ISBN-13: 0387485988

DOWNLOAD EBOOK

Provides broad insights into problems of coding control algorithms on a DSP platform. - Includes a set of Simulink simulation files (source codes) which permits readers to envisage the effects of control solutions on the overall motion control system. -bridges the gap between control analysis and industrial practice.


Electric Drives and Electromechanical Systems

Electric Drives and Electromechanical Systems

Author: Richard Crowder

Publisher: Butterworth-Heinemann

Published: 2019-10-19

Total Pages: 324

ISBN-13: 0081028857

DOWNLOAD EBOOK

Electric Drives and Electromechanical Devices: Applications and Control, Second Edition, presents a unified approach to the design and application of modern drive system. It explores problems involved in assembling complete, modern electric drive systems involving mechanical, electrical, and electronic elements. This book provides a global overview of design, specification applications, important design information, and methodologies.This new edition has been restructured to present a seamless, logical discussion on a wide range of topical problems relating to the design and specification of the complete motor-drive system. It is organised to establish immediate solutions to specific application problem. Subsidiary issues that have a considerable impact on the overall performance and reliability, including environmental protection and costs, energy efficiency, and cyber security, are also considered. - Presents a comprehensive consideration of electromechanical systems with insights into the complete drive system, including required sensors and mechanical components - Features in-depth discussion of control schemes, particularly focusing on practical operation - Includes extensive references to modern application domains and real-world case studies, such as electric vehicles - Considers the cyber aspects of drives, including networking and security


Electric Machines and Drives

Electric Machines and Drives

Author: Ned Mohan

Publisher: Wiley Global Education

Published: 2012-04-13

Total Pages: 290

ISBN-13: 111821448X

DOWNLOAD EBOOK

This book is part of a three-book series. Ned Mohan has been a leader in EES education and research for decades, as author of the best-selling text/reference Power Electronics. This book emphasizes applications of electric machines and drives that are essential for wind turbines and electric and hybrid-electric vehicles. The approach taken is unique in the following respects: A systems approach, where Electric Machines are covered in the context of the overall drives with applications that students can appreciate and get enthusiastic about; A fundamental and physics-based approach that not only teaches the analysis of electric machines and drives, but also prepares students for learning how to control them in a graduate level course; Use of the space-vector-theory that is made easy to understand. They are introduced in this book in such a way that students can appreciate their physical basis; A unique way to describe induction machines that clearly shows how they go from the motoring-mode to the generating-mode, for example in wind and electric vehicle applications, and how they ought to be controlled for the most efficient operation.