Scientists and conservationists are beginning to understand the importance of top carnivores to the health and integrity of fully functioning ecosystems. As burgeoning human populations continue to impinge on natural landscapes, the need for understanding carnivore populations and how we affect them is becoming increasingly acute.Desert Puma represents one of the most detailed assessments ever produced of the biology and ecology of a top carnivore. The husband-and-wife team of Kenneth Logan and Linda Sweanor set forth extensive data gathered from their ten-year field study of pumas in the Chihuahua Desert of New Mexico, also drawing on other reliable scientific data gathered throughout the puma's geographic range. Chapters examine: the evolutionary and modern history of pumas, their taxonomy, and physical description a detailed description and history of the study area in the Chihuahua Desert field techniques that were used in the research puma population dynamics and life history strategies the implications of puma behavior and social organization the relationships of pumas and their preyThe authors provide important new information about both the biology of pumas and their evolutionary ecology -- not only what pumas do, but why they do it. Logan and Sweanor explain how an understanding of puma evolutionary ecology can, and must, inform long-term conservation strategies. They end the book with their ideas regarding strategies for puma management and conservation, along with a consideration of the future of pumas and humans. Desert Puma makes a significant and original contribution to the science not only of pumas in desert ecosystems but of the role of top predators in all environments. It is an essential contribution to the bookshelf of any wildlife biologist or conservationist involved in large-scale land management or wildlife management.
This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.
Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ensure that the content is clear, representative but also interesting the text is complimented by a range of relevant graphs and photographs including representative engineering, in addition to several propeller performance charts. These items provide excellent reference and support materials for graduate and undergraduate projects and exercises. Students in the field of aerospace engineering will find that Powered Flight - The Engineering of Aerospace Propulsion supports their studies from the introductory stage and throughout more intensive follow-on studies.
This textbook is designed for an advanced course in control theory. The purpose of Chapter 1 is to introduce some results on the stability of dynamic systems achieved with the Lyapunov theory, and on its use for the synthesis of nonlinear control laws. The definition of norms and gains of dynamic systems is reported in Chapter 2 to provide the reader with the mathematical tools required in the following chapters. Some basic techniques for the analysis and the control of single-input, single-output systems are recalled in Chapter 3 to motivate the introduction, in the following chapters, of synthesis techniques for multi-input, multi-output systems. The analysis of multivariable systems, in terms of poles and zeros, manipulation rules of block diagrams, frequency response, stability of the feedback system, and static and dynamic performance, are discussed in Chapters 4 and 5. In Chapter 6 the pole-placement approach for the synthesis of state feedback control laws and state observers is described. Optimal control synthesis techniques for continuous- time systems are presented from Chapter 7 to 10. Specifically, the Linear Quadratic control method, the Kalman filter and the LQG control are widely described together with their main properties. These results are then extended to the discrete-time case in Chapter 11. The main algorithms and results of Model Predictive Control are finally presented in Chapter 12. Some useful mathematical notions are summarized in the Appendix. • stability • Lyapunov theory • multivariable systems • pole placement • state observers • optimal control • linear quadratic control • Kalman filter • LQG control • model predictive control
Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book’s first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text’s coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.