Manganese Removal from Groundwater

Manganese Removal from Groundwater

Author: J.H. Bruins

Publisher: CRC Press

Published: 2017-03-16

Total Pages: 162

ISBN-13: 1351652508

DOWNLOAD EBOOK

In The Netherlands, Belgium and other European countries, manganese is removed by conventional groundwater treatment with aeration and rapid (sand) filtration. Such a treatment process is easy to operate, cost effective and sustainable, because it does not make use of strong oxidants such as O3, Cl2, ClO2 and KMnO4 with the associated risk of by-product formation and over or under dosing. However, application of aeration-filtration is also facing drawbacks, especially the long ripening time of filter media. Due to the long ripening time, water companies have to waste large volumes of treated water, making this process less sustainable. Also, costs associated with filter media ripening (man power, electricity, operational and analysis costs) are high. Therefore decreasing the filter ripening time, regarding manganese removal is a big issue. Although already extended research has been carried out into manganese removal, the controlling mechanisms, especially of the start up face of filter media ripening, are not fully understood yet. The emphasis of this thesis is to provide a better understanding of the mechanisms involved in the ripening of virgin filter media, regarding manganese removal and how to shorten or completely eliminate the long ripening period of filters with virgin material. This thesis therefore highlights the role of the formation of a manganese oxide coating on virgin filter media. Characterization and identification revealed that the responsible manganese oxide for an effective manganese removal was Birnessite. It was found that Birnessite, formed at the beginning of the ripening process was of a biological origin. Based on the knowledge that manganese removal in conventional groundwater treatment is initiated biologically, long ripening times may be reduced by creating conditions favouring the growth of manganese oxidizing bacteria, e.g., by limiting the back wash frequency and / or intensity. Additionally, this thesis also shows that the use of freshly prepared manganese oxide, containing Birnessite, can completely eliminate filter media ripening time.


Best Practice Guide on the Control of Arsenic in Drinking Water

Best Practice Guide on the Control of Arsenic in Drinking Water

Author: Prosun Bhattacharya

Publisher: IWA Publishing

Published: 2017-07-15

Total Pages: 308

ISBN-13: 1843393859

DOWNLOAD EBOOK

Arsenic in drinking water derived from groundwater is arguably the biggest environmental chemical human health risk known at the present time, with well over 100,000,000 people around the world being exposed. Monitoring the hazard, assessing exposure and health risks and implementing effective remediation are therefore key tasks for organisations and individuals with responsibilities related to the supply of safe, clean drinking water. Best Practice Guide on the Control of Arsenic in Drinking Water, covering aspects of hazard distribution, exposure, health impacts, biomonitoring and remediation, including social and economic issues, is therefore a very timely contribution to disseminating useful knowledge in this area. The volume contains 10 short reviews of key aspects of this issue, supplemented by a further 14 case studies, each of which focusses on a particular area or technological or other practice, and written by leading experts in the field. Detailed selective reference lists provide pointers to more detailed guidance on relevant practice. The volume includes coverage of (i) arsenic hazard in groundwater and exposure routes to humans, including case studies in USA, SE Asia and UK; (ii) health impacts arising from exposure to arsenic in drinking water and biomonitoring approaches; (iii) developments in the nature of regulation of arsenic in drinking water; (iv) sampling and monitoring of arsenic, including novel methodologies; (v) approaches to remediation, particularly in the context of water safety planning, and including case studies from the USA, Italy, Poland and Bangladesh; and (vi) socio-economic aspects of remediation, including non-market valuation methods and local community engagement.


Advanced Processes for Simultaneous Arsenic and Manganese Removal

Advanced Processes for Simultaneous Arsenic and Manganese Removal

Author:

Publisher: American Water Works Association

Published: 2006

Total Pages: 132

ISBN-13: 1583214607

DOWNLOAD EBOOK

The project described in this report is an effort to modify, demonstrate and optimize a treatment process to simultaneously remove both arsenic and manganese. ... The treatment process selected for development and demonstration includes oxidation, ferric chloride addition, and filtration. The process can be used to remove arsenic or to simultaneously remove arsenic, iron and manganese.


Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain

Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain

Author: AL Ramanathan

Publisher: Springer

Published: 2015-06-01

Total Pages: 304

ISBN-13: 3319161245

DOWNLOAD EBOOK

This book offers a meaningful and practicable guide to better management of arsenic problems in the groundwater of the Gangetic Plain. It gathers contributions from distinguished researchers who have been actively working in the area for over a decade. The arsenic contamination of groundwater is a growing concern in the central Gangetic Plain, where the local population’s main sources of fresh water are surface water, groundwater and rain water; of these sources, only the last two generally meet the most important criteria for drinking water in their natural state. Natural geological changes are presumed to be the primary reason for arsenic contamination in this region. Further, most of the people living in this area have developed the habit of drinking water (groundwater) from the arsenic-contaminated tubewells in many parts of the region. As a result, many are suffering from arsenicosis and many more are at risk. Since the cause of arsenic contamination in groundwater still remains unclear, this book seeks to address the arsenic issue in this region by pursuing a holistic and systematic scientific approach. Accordingly, it delineates various sources, processes, hypotheses and remedial approaches that are needed to manage the arsenic contamination in the Central Gangetic Plain.


Heavy Metals In Water

Heavy Metals In Water

Author: Sanjay K. Sharma

Publisher: Royal Society of Chemistry

Published: 2014

Total Pages: 382

ISBN-13: 1849738858

DOWNLOAD EBOOK

This book highlights the latest research on dissolved heavy metals in drinking water and their removal.