Adsorption processes have played a central role in water treatment for many years but their importance is on the rise with the continuous discoveries of new micropollutants in the water cycle (pharmaceuticals for example). In addition to the classical application in drinking water treatment, other application fields are attracting increasing interest, such as wastewater treatment, groundwater remediation, treatment of landfill leachate, and so on. Based on the author's long-term experience in adsorption research, the scientific monograph treats the theoretical fundamentals of adsorption technology for water treatment from a practical perspective. It presents all the basics needed for experimental adsorption studies as well as for process modelling and adsorber design. Topics discussed in the monograph include: introduction into basic concepts and practical applications of adsorption processes; adsorbents and their characterisation, single and multi-solute adsorption equilibria, adsorption kinetics, adsorption dynamics in fixed-bed adsorbers and fixed-bed adsorber design, regeneration and reactivation of adsorbents, introduction into geosorption processes in bank filtration and groundwater recharge. According to the increasing importance of micropollutants in the water cycle, particular attention is paid to their competitive adsorption in presence of background organic matter. Clear illustrations, extensive literature references and a useful index make this work indispensible for both scientists and technicians involved in water treatment.
Adsorption: Fundamental Processes and Applications, Volume 33 in the Interface Science and Technology Series, discusses the great technological importance of adsorption and describes how adsorbents are used on a large scale as desiccants, catalysts, catalyst supports, in the separation of gases, the purification of liquids, pollution control, and in respiratory protection. Finally, it explores how adsorption phenomena play a vital role in many solid-state reactions and biological mechanisms, as well as stressing the importance of the widespread use of adsorption techniques in the characterization of surface properties and the texture of fine powders. - Covers the fundamental aspects of adsorption process engineering - Reviews the environmental impact of key aquatic pollutants - Discusses and analyzes the importance of adsorption processes for water treatment - Highlights opportunity areas for adsorption process intensification - Edited by a world-leading researcher in interface science
Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refrigeration cycles. The book guides readers through the research process, covering key aspects such as: the principle of adsorption refrigeration; choosing adsorbents according to different characteristics; thermodynamic equations; methods for the design of heat exchangers for adsorbers; and the advanced adsorption cycles needed. It is also valuable as a reference for professionals working in these areas. Covers state-of-the art of adsorption research and technologies for relevant applications, working from adsorption working pairs through to the application of adsorption refrigeration technology for low grade heat recovery Assesses sustainable alternatives to traditional refrigeration methods, such as the application of adsorption refrigeration systems for solar energy and waste heat Includes a key chapter on the design of adsorption refrigeration systems as a tutorial for readers new to the topic; the calculation models for different components and working processes are also included Takes real-world examples giving an insight into existing products and installations and enabling readers to apply the knowledge to their own work Academics researching low grade energy utilization and refrigeration; Graduate students of refrigeration and low grade energy utilization; Experienced engineers wanting to renew knowledge of adsorption technology,Engineers working at companies developing adsorption chillers; Graduate students working on thermally driven systems; Advanced undergraduates for the Refrigeration Principle as a part of thermal driven refrigeration technology.
This practical book is valuable for a diversity of applications in both air and water pollution. Adsorption Technology usually deals with control of organic compounds, such as VOCs, pesticides, phenolics, and complex synthetic organics. However, it is also used to control certain inorganic compounds such as heavy metals, reduced sulfur gases, and chlorine. Much original work, including original figures.
The efficient utilisation of energy at low heat source temperature is a key issue for both industry and academia. In recent years, the heat-activated adsorption cycles are proven to be practical and energy efficient method for converting low-temperature waste heat into useful effects such as cooling, freezing, heating, storage and desalination and this is reflected by the dearth of literature publications. The adsorption technology would steer towards the key development of heat activated machines for the energy industry and they could offer cost-effective solutions for achieving energy efficiency and environment sustainability. This edited book covers the state-of-the art of adsorption research and technologies for relevant applications with the objectives of energy efficiency and sustainability. It consists of fifteen chapters from renowned experts in adsorption fields around the world covering the aspects of adsorption fundamentals, adsorbent materials characterisations, adsorption cooling, storage, and heat pump systems. This book examines new research directions in this frontier field.
Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refrigeration cycles. The book guides readers through the research process, covering key aspects such as: the principle of adsorption refrigeration; choosing adsorbents according to different characteristics; thermodynamic equations; methods for the design of heat exchangers for adsorbers; and the advanced adsorption cycles needed. It is also valuable as a reference for professionals working in these areas. Covers state-of-the art of adsorption research and technologies for relevant applications, working from adsorption working pairs through to the application of adsorption refrigeration technology for low grade heat recovery Assesses sustainable alternatives to traditional refrigeration methods, such as the application of adsorption refrigeration systems for solar energy and waste heat Includes a key chapter on the design of adsorption refrigeration systems as a tutorial for readers new to the topic; the calculation models for different components and working processes are also included Takes real-world examples giving an insight into existing products and installations and enabling readers to apply the knowledge to their own work Academics researching low grade energy utilization and refrigeration; Graduate students of refrigeration and low grade energy utilization; Experienced engineers wanting to renew knowledge of adsorption technology,Engineers working at companies developing adsorption chillers; Graduate students working on thermally driven systems; Advanced undergraduates for the Refrigeration Principle as a part of thermal driven refrigeration technology.
This book summarises the advanced CO2 capture technologies that can be used to reduce greenhouse gas emissions, especially those from large-scale sources, such as power-generation and steel-making plants. Focusing on the fundamental chemistry and chemical processes, as well as advanced technologies, including absorption and adsorption, it also discusses other aspects of the major CO2 capture methods: membrane separation; the basic chemistry and process for CO2 capture; the development of materials and processes; and practical applications, based on the authors’ R&D experience. This book serves as a valuable reference resource for researchers, teachers and students interested in CO2 problems, providing essential information on how to capture CO2 from various types of gases efficiently. It is also of interest to practitioners and academics, as it discusses the performance of the latest technologies applied in large-scale emission sources.
For the non-specialist involved with evaluating adsorption technology for specific applications, Adsorption Technology provides a timely, hands-on source of step-by-step fundamentals required to meet the needs of all types of adsorption situations. Presenting theoretical and practical information adaptable to granular activated carbon as well as synthetic adsorbents, this illustrated, easy-to-use guide offers convenient access to: principles of adsorption theory, isotherms, and the physical basis for mathematical models ... understanding of laboratory experiments needed to screen adsorbents for new applications ... procedures for testing and evaluating adsorbents in pilot plant studies ... methods for developing conceptual flowsheets for subsequent engineering cost estimating ... and more. With this important reference, industrial process, chemical, and environmental engineers and chemists now have a dependable single source to turn to for a solid, working understanding of applied adsorption technology. Moreover, this volume is an ideal text for graduate-level courses in chemical and environmental engineering, as well as continuing education courses and professional seminars. Book jacket.
Fundamentals of Adsorption contains 2 plenary lectures and 96 selected papers from the IVth International Conference, Kyoto, May, 1992. The topics cover a wide range of studies from fundamentals to applications: characterization of porous adsorbents, molecular simulation, adsorption isotherms, diffusion in adsorbents, breakthrough detection, chromatography, pressure swing operation, etc. Model studies on adsorption, surface characterization, microporosimetry, molecular simulations of equilibrium and diffusion, computer simulation of adsorption beds, and many theoretical studies are also included. Special attention is given to: bulk gas separation and purification, solvent recovery, bioproduct separation, environmental pollution control, methane storage, adsorption cooling and resources recovery.