Admissible Solutions of Hyperbolic Conservation Laws

Admissible Solutions of Hyperbolic Conservation Laws

Author: Tai-Ping Liu

Publisher: American Mathematical Soc.

Published: 1981

Total Pages: 86

ISBN-13: 0821822403

DOWNLOAD EBOOK

We consider a system of n conservation laws: [partial derivative/boundary/degree of a polynomial symbol]∂u [over] [partial derivative/boundary/degree of a polynomial symbol]∂t + [partial derivative/boundary/degree of a polynomial symbol]∂f(u) [over] [partial derivative/boundary/degree of a polynomial symbol]∂x = 0. The system is assumed to be strictly hyperbolic, but not necessarily genuinely nonlinear in the sense of Peter Lax (Hyperbolic systems of conservation laws, 1957). Our purpose is to study the regularity, large-time behavior and the approximation of the solution of the initial-value problem. Our analysis is based on the random choice method, using the solution of the Riemann problem, as building blocks.


Hyperbolic Conservation Laws in Continuum Physics

Hyperbolic Conservation Laws in Continuum Physics

Author: Constantine M. Dafermos

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 636

ISBN-13: 3540290893

DOWNLOAD EBOOK

This is a lucid and authoritative exposition of the mathematical theory of hyperbolic system laws. The second edition contains a new chapter recounting exciting recent developments on the vanishing viscosity method. Numerous new sections introduce newly derived results. From the reviews: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH


Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves

Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves

Author: Peter D. Lax

Publisher: SIAM

Published: 1973-01-01

Total Pages: 55

ISBN-13: 0898711770

DOWNLOAD EBOOK

This book deals with the mathematical side of the theory of shock waves. The author presents what is known about the existence and uniqueness of generalized solutions of the initial value problem subject to the entropy conditions. The subtle dissipation introduced by the entropy condition is investigated and the slow decay in signal strength it causes is shown.


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws

Author: LEVEQUE

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 221

ISBN-13: 3034851162

DOWNLOAD EBOOK

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.


Nonstrictly Hyperbolic Conservation Laws

Nonstrictly Hyperbolic Conservation Laws

Author: Barbara Lee Keyfitz

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 148

ISBN-13: 0821850695

DOWNLOAD EBOOK

The area of nonstrictly hyperbolic conservation laws is emerging as an important field, not only because it developed from applications of current interest, such as reservoir simulation, visco-elasticity, and multiphase flow, but also because the subject raises interesting mathematical questions of well-posedness, the structure of solutions, and admissibility criteria for weak solutions. The papers in this collection are based on talks presented at an AMS Special Session, held in Anaheim, California, in January 1985. Requiring some background in conservation laws, this collection will be of interest to research mathematicians working in the field of nonstrictly hyperbolic partial differential equations, as well as students who are learning the area and are looking for new applications and challenging problems in this field. The collection provides an overview of the field, examples of applications, descriptions of available techniques, and a bibliography of the literature.


Shock Waves and Reaction—Diffusion Equations

Shock Waves and Reaction—Diffusion Equations

Author: Joel Smoller

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 596

ISBN-13: 1468401521

DOWNLOAD EBOOK

. . . the progress of physics will to a large extent depend on the progress of nonlinear mathe matics, of methods to solve nonlinear equations . . . and therefore we can learn by comparing different nonlinear problems. WERNER HEISENBERG I undertook to write this book for two reasons. First, I wanted to make easily available the basics of both the theory of hyperbolic conservation laws and the theory of systems of reaction-diffusion equations, including the generalized Morse theory as developed by C. Conley. These important subjects seem difficult to learn since the results are scattered throughout the research journals. 1 Second, I feel that there is a need to present the modern methods and ideas in these fields to a wider audience than just mathe maticians. Thus, the book has some rather sophisticated aspects to it, as well as certain textbook aspects. The latter serve to explain, somewhat, the reason that a book with the title Shock Waves and Reaction-Diffusion Equations has the first nine chapters devoted to linear partial differential equations. More precisely, I have found from my classroom experience that it is far easier to grasp the subtleties of nonlinear partial differential equations after one has an understanding of the basic notions in the linear theory. This book is divided into four main parts: linear theory, reaction diffusion equations, shock wave theory, and the Conley index, in that order. Thus, the text begins with a discussion of ill-posed problems.


Systems of Nonlinear Partial Differential Equations

Systems of Nonlinear Partial Differential Equations

Author: J.M. Ball

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 476

ISBN-13: 9400971893

DOWNLOAD EBOOK

This volume contains the proceedings of a NATO/London Mathematical Society Advanced Study Institute held in Oxford from 25 July - 7 August 1982. The institute concerned the theory and applications of systems of nonlinear partial differential equations, with emphasis on techniques appropriate to systems of more than one equation. Most of the lecturers and participants were analysts specializing in partial differential equations, but also present were a number of numerical analysts, workers in mechanics, and other applied mathematicians. The organizing committee for the institute was J.M. Ball (Heriot-Watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt), C.M. Dafermos (Brown), S. Hildebrandt (Bonn) and J.S. pym (Sheffield) . The programme of the institute consisted of a number of courses of expository lectures, together with special sessions on different topics. It is a pleasure to thank all the lecturers for the care they took in the preparation of their talks, and S.S. Antman, A.J. Chorin, J.K. Hale and J.E. Marsden for the organization of their special sessions. The institute was made possible by financial support from NATO, the London Mathematical Society, the u.S. Army Research Office, the u.S. Army European Research Office, and the u.S. National Science Foundation. The lectures were held in the Mathematical Institute of the University of Oxford, and residential accommodation was provided at Hertford College.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.