Additive Operator-Difference Schemes

Additive Operator-Difference Schemes

Author: Petr N. Vabishchevich

Publisher: Walter de Gruyter

Published: 2013-11-27

Total Pages: 370

ISBN-13: 3110321467

DOWNLOAD EBOOK

Applied mathematical modeling is concerned with solving unsteady problems. Splitting schemes are attributed to the transition from a complex problem to a chain of simpler problems. This book shows how to construct additive difference schemes (splitting schemes) to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods) and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for systems of equations. The book is written for specialists in computational mathematics and mathematical modeling. All topics are presented in a clear and accessible manner.


Difference Schemes with Operator Factors

Difference Schemes with Operator Factors

Author: A.A. Samarskii

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 390

ISBN-13: 9401598746

DOWNLOAD EBOOK

Two-and three-level difference schemes for discretisation in time, in conjunction with finite difference or finite element approximations with respect to the space variables, are often used to solve numerically non stationary problems of mathematical physics. In the theoretical analysis of difference schemes our basic attention is paid to the problem of sta bility of a difference solution (or well posedness of a difference scheme) with respect to small perturbations of the initial conditions and the right hand side. The theory of stability of difference schemes develops in various di rections. The most important results on this subject can be found in the book by A.A. Samarskii and A.V. Goolin [Samarskii and Goolin, 1973]. The survey papers of V. Thomee [Thomee, 1969, Thomee, 1990], A.V. Goolin and A.A. Samarskii [Goolin and Samarskii, 1976], E. Tad more [Tadmor, 1987] should also be mentioned here. The stability theory is a basis for the analysis of the convergence of an approximative solu tion to the exact solution, provided that the mesh width tends to zero. In this case the required estimate for the truncation error follows from consideration of the corresponding problem for it and from a priori es timates of stability with respect to the initial data and the right hand side. Putting it briefly, this means the known result that consistency and stability imply convergence.


Exact Finite-Difference Schemes

Exact Finite-Difference Schemes

Author: Sergey Lemeshevsky

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-09-26

Total Pages: 248

ISBN-13: 311049132X

DOWNLOAD EBOOK

Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations. Contents: Basic notation Preliminary results Hyperbolic equations Parabolic equations Use of exact difference schemes to construct NSFD discretizations of differential equations Exact and truncated difference schemes for boundary-value problem Exact difference schemes for stochastic differential equations Numerical blow-up time Bibliography


Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications

Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications

Author: Oleg P. Iliev

Publisher: Springer Science & Business Media

Published: 2013-06-04

Total Pages: 334

ISBN-13: 1461471729

DOWNLOAD EBOOK

One of the current main challenges in the area of scientific computing​ is the design and implementation of accurate numerical models for complex physical systems which are described by time dependent coupled systems of nonlinear PDEs. This volume integrates the works of experts in computational mathematics and its applications, with a focus on modern algorithms which are at the heart of accurate modeling: adaptive finite element methods, conservative finite difference methods and finite volume methods, and multilevel solution techniques. Fundamental theoretical results are revisited in survey articles and new techniques in numerical analysis are introduced. Applications showcasing the efficiency, reliability and robustness of the algorithms in porous media, structural mechanics and electromagnetism are presented. Researchers and graduate students in numerical analysis and numerical solutions of PDEs and their scientific computing applications will find this book useful.


Numerical Analysis and Its Applications

Numerical Analysis and Its Applications

Author: Ivan Dimov

Publisher: Springer

Published: 2013-10-01

Total Pages: 583

ISBN-13: 3642415156

DOWNLOAD EBOOK

This book constitutes thoroughly revised selected papers of the 5th International Conference on Numerical Analysis and Its Applications, NAA 2012, held in Lozenetz, Bulgaria, in June 2012. The 65 revised papers presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest such as numerical approximation and computational geometry; numerical linear algebra and numerical solution of transcendental equation; numerical methods for differential equations; numerical stochastics, numerical modeling; and high performance scientific computing.


Large-Scale Scientific Computing

Large-Scale Scientific Computing

Author: Ivan Lirkov

Publisher: Springer

Published: 2018-01-10

Total Pages: 607

ISBN-13: 3319734415

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-conference proceedings of the 11th International Conference on Large-Scale Scientific Computations, LSSC 2017, held in Sozopol, Bulgaria, in June 2017. The 63 revised short papers together with 3 full papers presented were carefully reviewed and selected from 63 submissions. The conference presents results from the following topics: Hierarchical, adaptive, domain decomposition and local refinement methods; Robust preconditioning algorithms; Monte Carlo methods and algorithms; Numerical linear algebra; Control and optimization; Parallel algorithms and performance analysis; Large-scale computations of environmental, biomedical and engineering problems. The chapter 'Parallel Aggregation Based on Compatible Weighted Matching for AMG' is available open access under a CC BY 4.0 license.


Scale Space and Variational Methods in Computer Vision

Scale Space and Variational Methods in Computer Vision

Author: Xue-Cheng Tai

Publisher: Springer Science & Business Media

Published: 2009-05-25

Total Pages: 882

ISBN-13: 3642022553

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, emanated from the joint edition of the 5th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2009 and the 7th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2009, held in Voss, Norway in June 2009. The 71 revised full papers presented were carefully reviewed and selected numerous submissions. The papers are organized in topical sections on segmentation and detection; image enhancement and reconstruction; motion analysis, optical flow, registration and tracking; surfaces and shapes; scale space and feature extraction.


Finite Difference Methods,Theory and Applications

Finite Difference Methods,Theory and Applications

Author: Ivan Dimov

Publisher: Springer

Published: 2015-06-16

Total Pages: 443

ISBN-13: 3319202391

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference and combined finite difference methods as well as finite element methods and their various applications in physics, chemistry, biology and finance.


Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Author: A. A. Samarskii

Publisher: Walter de Gruyter

Published: 2008-08-27

Total Pages: 453

ISBN-13: 3110205793

DOWNLOAD EBOOK

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.