Additive Manufacturing, Modeling Systems and 3D Prototyping Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), July 24–28, 2022, New York, USA
This book discusses the latest advances in digital modeling systems (DMSs) and additive manufacturing (AM) technologies. It covers applications of networked technologies, ubiquitous computing, new materials and hybrid production systems, discussing how they are changing the processes of conception, modeling and production of products and systems of product. The book emphasizes ergonomic and sustainability issues, as well as timely topics such as DMSs and AM in Industry 4.0, DMSs and AM in developing countries, DMSs and AM in extreme environments, thus highlighting future trends and promising scenarios for further developing those technologies. Based on the AHFE 2019 International Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping, held on July 24-28, 2019, in Washington D.C., USA, the book is intended as source of inspiration for researchers, engineers and stakeholders, and to foster interdisciplinary and international collaborations between them.
This book covers 3D printing activities by fused deposition modeling process. The two introductory chapters discuss the principle, types of machines and raw materials, process parameters, defects, design variations and simulation methods. Six chapters are devoted to experimental work related to process improvement, mechanical testing and characterization of the process, followed by three chapters on post-processing of 3D printed components and two chapters addressing sustainability concerns. Seven chapters discuss various applications including composites, external medical devices, drug delivery system, orthotic inserts, watertight components and 4D printing using FDM process. Finally, six chapters are dedicated to the study on modeling and optimization of FDM process using computational models, evolutionary algorithms, machine learning, metaheuristic approaches and optimization of layout and tool path.
This book presents a selection of papers on advanced technologies for 3D printing and additive manufacturing, and demonstrates how these technologies have changed the face of direct, digital technologies for the rapid production of models, prototypes and patterns. Because of their wide range of applications, 3D printing and additive manufacturing technologies have sparked a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across such diverse industries as consumer products, aerospace, medical devices and automotive engineering. This book will help designers, R&D personnel, and practicing engineers grasp the latest developments in the field of 3D Printing and Additive Manufacturing.
Standards, Quality Control and Measurement Sciences in 3D Printing and Additive Manufacturing addresses the critical elements of the standards and measurement sciences in 3D printing to help readers design and create safe, reliable products of high quality. With 3D printing revolutionizing the process of manufacturing in a wide range of products, the book takes key features into account, such as design and fabrication and the current state and future potentials and opportunities in the field. In addition, the book provides an in-depth analysis on the importance of standards and measurement sciences. With self-test exercises at the end of each chapter, readers can improve their ability to take up challenges and become proficient in a number of topics related to 3D printing, including software usage, materials specification and benchmarking. - Helps the reader understand the quality framework tailored for 3D printing processes - Explains data format and process control in 3D printing - Provides an overview of different materials and characterization methods - Covers benchmarking and metrology for 3D printing
This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.
This book provides readers with a timely snapshot of human factors research and methods fostering a better integration of technologies and humans during the whole manufacturing cycle, giving a special emphasis to the quality and safety of the industrial environment for workers, the efficiency of the manufacturing processes itself, the quality of the final product, and its distribution to and use by the customers. It discusses timely issues relating to the automation of the manufacturing processes, and the challenges imposed by the implementation of industry 4.0, additive manufacturing and 3D printing technologies. Contributions cover a range of industrial sectors, such as the automotive, health and constructions ones, highlighting both organizational and engineering solutions fostering sustainability, globalization, customization, workers’ well-being and consumers’ satisfaction, among other issues. Based on the AHFE 2021 Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, held virtually on 25–29 July, 2021, from USA, this book, which merges ergonomic research and technical know-how in the field of manufacturing and product design, addresses a wide range of engineers, designers and professionals, dealing with the integration of technologies and humans in the factories of the future.
This book discusses the latest advances in the broadly defined field of advanced manufacturing and process control. It reports on cutting-edge strategies for sustainable production and product life cycle management, and on a variety of people-centered issues in the design, operation and management of manufacturing systems and processes. Further, it presents digital modeling systems and additive manufacturing technologies, including advanced applications for different purposes, and discusses in detail the implementation of and challenges imposed by 3D printing technologies. Based on three AHFE 2020 Conferences (the AHFE 2020 Virtual Conference on Human Aspects of Advanced Manufacturing, the AHFE 2020 Virtual Conference on Advanced Production Management and Process Control and the AHFE 2020 Virtual Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping, the book merges ergonomics research, design applications, and up-to-date analyses of various engineering processes. It brings together experimental studies, theoretical methods and best practices, highlights future trends and suggests directions for further technological developments and the improved integration of technologies and humans in the manufacturing industry.
The text presents the latest research and development, technical challenges, and future directions in the field of hybrid metal additive manufacturing. It further discusses the modeling of hybrid additive manufacturing processes for metals, hybrid additive manufacturing of composite materials, and low-carbon hybrid additive manufacturing processes. THIS BOOK •Presents cutting-edge advancements and limitations in hybrid additive manufacturing technologies. • Discusses fabrication methods and rapid tooling techniques focusing on metals, composites, and alloys. •Highlights the importance of low-carbon additive manufacturing technologies toward achieving sustainability. •Emphasizes the challenges and solutions for integrating additive manufacturing and Industry 4.0 to enable rapid manufacturing of customized and tailored products. • Covers hybrid additive manufacturing of composite materials and additive manufacturing for fabricating high-hardness components. The text discusses the recent advancements in additive manufacturing of high-hardness components and covers important engineering materials such as metals, alloys, and composites. It further highlights defects and post-processing of hybrid additive manufacturing components, sustainability solutions for hybrid additive manufacturing processes, and recycling of machining waste into metal powder feedstock. It will serve as an ideal reference text for senior undergraduate and graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.