Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1995

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Vorticity and Incompressible Flow

Vorticity and Incompressible Flow

Author: Andrew J. Majda

Publisher: Cambridge University Press

Published: 2002

Total Pages: 562

ISBN-13: 9780521639484

DOWNLOAD EBOOK

This book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. While the contents center on mathematical theory, many parts of the book showcase the interaction between rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprise a modern applied mathematics graduate course on the weak solution theory for incompressible flow.


Mesh Adaption Strategies for Vortex-dominated Flows

Mesh Adaption Strategies for Vortex-dominated Flows

Author: Sean Javad Kamkar

Publisher: Stanford University

Published: 2011

Total Pages: 218

ISBN-13:

DOWNLOAD EBOOK

A new adaptive mesh refinement strategy that is based on a coupled feature-detection and error-estimation approach is developed. The overall goal is to apply the proper degree of refinement to key vortical features in aircraft and rotorcraft wakes. The refinement paradigm is based on a two-stage process wherein the vortical regions are initially identified for refinement using feature-detection, and then the appropriate resolution is determined by the local solution error. The feature-detection scheme uses a local normalization procedure that allows it to automatically identify regions for refinement with threshold values that are not dependent upon the convective scales of the problem. An error estimator, based on the Richardson Extrapolation method, then supplies the identified features with appropriate levels of refinement. The estimator is shown to be well-behaved for steady-state and time-accurate aerodynamic flows. The above strategy is implemented within the Helios code, which features a dual-mesh paradigm of unstructured grids in the near-body domain, and adaptive Cartesian grids in the off-body domain. A main objective of this work is to control the adaption process so that high fidelity wake resolution is obtained in the off-body domain. The approach is tested on several theoretical and practical vortex-dominated flow-fields in an attempt to resolve wingtip vortices and rotor wakes. Accuracy improvements to rotorcraft performance metrics and increased wake resolution are simultaneously documented.


Incompressible Computational Fluid Dynamics

Incompressible Computational Fluid Dynamics

Author: Max D. Gunzburger

Publisher: Cambridge University Press

Published: 2009-01-11

Total Pages: 0

ISBN-13: 9780521096225

DOWNLOAD EBOOK

Incompressible computational fluid dynamics is an emerging and important discipline, with numerous applications in industry and science. Its methods employ rigourous mathematical analysis far beyond what is presently possible for compressible flows. Vortex methods, finite elements, and spectral methods are emphasised. Contributions from leading experts in the various sub-fields portray the wide-ranging nature of the subject. The book provides an entrée into the current research in the field. It can also serve as a source book for researchers and others who require information on methods and techniques.


Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations

Author: Charles R. Doering

Publisher: Cambridge University Press

Published: 1995

Total Pages: 236

ISBN-13: 9780521445689

DOWNLOAD EBOOK

This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.