Adaptive Finite Elements in the Discretization of Parabolic Problems

Adaptive Finite Elements in the Discretization of Parabolic Problems

Author: Christian A. Möller

Publisher: Logos Verlag Berlin GmbH

Published: 2011

Total Pages: 259

ISBN-13: 3832528156

DOWNLOAD EBOOK

Adaptivity is a crucial tool in state-of-the-art scientific computing. However, its theoretical foundations are only understood partially and are subject of current research. This self-contained work provides theoretical basics on partial differential equations and finite element discretizations before focusing on adaptive finite element methods for time dependent problems. In this context, aspects of temporal adaptivity and error control are considered in particular. Based on the gained insights, a specific adaptive algorithm is designed and analyzed thoroughly. Most importantly, it is proven that the presented adaptive method terminates within any demanded error tolerance. Moreover, the developed algorithm is analyzed from a numerical point of view and its performance is compared to well-known standard methods. Finally, it is applied to the real-life problem of concrete carbonation, where two different discretizations are compared.


Galerkin Finite Element Methods for Parabolic Problems

Galerkin Finite Element Methods for Parabolic Problems

Author: Vidar Thomee

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 310

ISBN-13: 3662033593

DOWNLOAD EBOOK

My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.


Adaptive Finite Element Methods for Parabolic Partial Differential Equations

Adaptive Finite Element Methods for Parabolic Partial Differential Equations

Author: J. E. Flaherty

Publisher:

Published: 1983

Total Pages: 23

ISBN-13:

DOWNLOAD EBOOK

The authors discuss a finite element method for solving initial-boundary value problems for vector systems of partial differential equations in one space dimension and time. The method automatically adjusts the computational mesh as the solution evolves in time so as to approximately minimize the local discretization error. They are thus able to calculate accurate solutions with fewer elements than would be necessary with a uniform mesh. This overall method contains two distinct steps: a solution step and a mesh selection step. They solve the partial differential equations using a finite element-Galerkin method on trapezoidal space-time-elements with either piecewise linear or cubic Hermits polynomial approximations. A variety of mesh selection strategies are discussed and analyzed. Results are presented for several computational examples.


Adaptive Finite Element Method I: Solution Algorithm and Computational Examples

Adaptive Finite Element Method I: Solution Algorithm and Computational Examples

Author:

Publisher:

Published: 1994

Total Pages: 57

ISBN-13:

DOWNLOAD EBOOK

An adaptive finite element method is developed to solve initial boundary value problems for vector systems of parabolic partial differential equations in one space dimension and time. The differential equations are discretized in space using piecewise linear finite element approximations. Superconvergence properties and quadratic polynomials are used to derive a computation ally inexpensive approximation to the spatial component of the error. This technique is coupled with time integration schemes of successively higher orders to obtain an approximation of the temporal and total discretization errors. These approximate errors are used to control an adaptive mesh refinement strategy. Refinement is performed in space, time, or both space and time depending on the dominant component of the error estimate. A computer code coupling this refinement strategy and stable mesh movement has been written and applied to a number of problems. These computations confirm that proper mesh movement can reduce the computational efforts associated with mesh refinement.


Adaptive Finite Element Methods for Parabolic Systems in One- and Two-Space Dimensions

Adaptive Finite Element Methods for Parabolic Systems in One- and Two-Space Dimensions

Author: Slimane Adjerid

Publisher:

Published: 1987

Total Pages: 39

ISBN-13:

DOWNLOAD EBOOK

Adaptive finite element methods are given for solving initial boundary value problems for vector systems of parabolic partial differential equations in one- and two-space dimensions. One-dimension systems are discretized using piecewise linear finite element approximations in space and a backward difference code for stiff ordinary differential systems in time. A spatial error estimate is calculated using piecewise quadratic approximations that employ nodal superconvergence to increase computational efficiency. This error estimate is used to move and refine the finite element mesh in order to equidistribute a measure of the total spatial error and to satisfy a prescribed error tolerance. Ordinary differential equations for the spatial error estimate and the mesh motion are integrated in time using the same backward difference software that is used to determine the finite element solution. Two-dimension systems are discretized using piecewise bilinear finite element approximations in space and backward difference software in time. A spatial error estimate is calculated using piecewise cubic approximations that take advantage of nodal superconvergence. This error estimate is used to locally refine a stationary finite element mesh in order to satisfy a prescribed spatial error tolerance.


Space-Time Methods

Space-Time Methods

Author: Ulrich Langer

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-09-23

Total Pages: 261

ISBN-13: 3110548488

DOWNLOAD EBOOK

This volume provides an introduction to modern space-time discretization methods such as finite and boundary elements and isogeometric analysis for time-dependent initial-boundary value problems of parabolic and hyperbolic type. Particular focus is given on stable formulations, error estimates, adaptivity in space and time, efficient solution algorithms, parallelization of the solution pipeline, and applications in science and engineering.


Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems

Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems

Author: Jens Lang

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 161

ISBN-13: 3662044846

DOWNLOAD EBOOK

Nowadays there is an increasing emphasis on all aspects of adaptively gener ating a grid that evolves with the solution of a PDE. Another challenge is to develop efficient higher-order one-step integration methods which can handle very stiff equations and which allow us to accommodate a spatial grid in each time step without any specific difficulties. In this monograph a combination of both error-controlled grid refinement and one-step methods of Rosenbrock-type is presented. It is my intention to impart the beauty and complexity found in the theoretical investigation of the adaptive algorithm proposed here, in its realization and in solving non-trivial complex problems. I hope that this method will find many more interesting applications. Berlin-Dahlem, May 2000 Jens Lang Acknowledgements I have looked forward to writing this section since it is a pleasure for me to thank all friends who made this work possible and provided valuable input. I would like to express my gratitude to Peter Deuflhard for giving me the oppor tunity to work in the field of Scientific Computing. I have benefited immensly from his help to get the right perspectives, and from his continuous encourage ment and support over several years. He certainly will forgive me the use of Rosenbrock methods rather than extrapolation methods to integrate in time.