The fundamental theme of this book is theoretical study of differential evolution and algorithmic analysis of parameter adaptive schemes. The book offers real-world insights into a variety of large-scale complex industrial applications.
Optimization problems were and still are the focus of mathematics from antiquity to the present. Since the beginning of our civilization, the human race has had to confront numerous technological challenges, such as finding the optimal solution of various problems including control technologies, power sources construction, applications in economy, mechanical engineering and energy distribution amongst others. These examples encompass both ancient as well as modern technologies like the first electrical energy distribution network in USA etc. Some of the key principles formulated in the middle ages were done by Johannes Kepler (Problem of the wine barrels), Johan Bernoulli (brachystochrone problem), Leonhard Euler (Calculus of Variations), Lagrange (Principle multipliers), that were formulated primarily in the ancient world and are of a geometric nature. In the beginning of the modern era, works of L.V. Kantorovich and G.B. Dantzig (so-called linear programming) can be considered amongst others. This book discusses a wide spectrum of optimization methods from classical to modern, alike heuristics. Novel as well as classical techniques is also discussed in this book, including its mutual intersection. Together with many interesting chapters, a reader will also encounter various methods used for proposed optimization approaches, such as game theory and evolutionary algorithms or modelling of evolutionary algorithm dynamics like complex networks.
Differential evolution is arguably one of the hottest topics in today's computational intelligence research. This book seeks to present a comprehensive study of the state of the art in this technology and also directions for future research. The fourteen chapters of this book have been written by leading experts in the area. The first seven chapters focus on algorithm design, while the last seven describe real-world applications. Chapter 1 introduces the basic differential evolution (DE) algorithm and presents a broad overview of the field. Chapter 2 presents a new, rotationally invariant DE algorithm. The role of self-adaptive control parameters in DE is investigated in Chapter 3. Chapters 4 and 5 address constrained optimization; the former develops suitable stopping conditions for the DE run, and the latter presents an improved DE algorithm for problems with very small feasible regions. A novel DE algorithm, based on the concept of "opposite" points, is the topic of Chapter 6. Chapter 7 provides a survey of multi-objective differential evolution algorithms. A review of the major application areas of differential evolution is presented in Chapter 8. Chapter 9 discusses the application of differential evolution in two important areas of applied electromagnetics. Chapters 10 and 11 focus on applications of hybrid DE algorithms to problems in power system optimization. Chapter 12 applies the DE algorithm to computer chess. The use of DE to solve a problem in bioprocess engineering is discussed in Chapter 13. Chapter 14 describes the application of hybrid differential evolution to a problem in control engineering.
Problems demanding globally optimal solutions are ubiquitous, yet many are intractable when they involve constrained functions having many local optima and interacting, mixed-type variables. The differential evolution (DE) algorithm is a practical approach to global numerical optimization which is easy to understand, simple to implement, reliable, and fast. Packed with illustrations, computer code, new insights, and practical advice, this volume explores DE in both principle and practice. It is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimization.
Computational Intelligence: An Introduction, Second Edition offers an in-depth exploration into the adaptive mechanisms that enable intelligent behaviour in complex and changing environments. The main focus of this text is centred on the computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. Engelbrecht provides readers with a wide knowledge of Computational Intelligence (CI) paradigms and algorithms; inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without any difficulty through a single Java class as part of the CI library. Key features of this second edition include: A tutorial, hands-on based presentation of the material. State-of-the-art coverage of the most recent developments in computational intelligence with more elaborate discussions on intelligence and artificial intelligence (AI). New discussion of Darwinian evolution versus Lamarckian evolution, also including swarm robotics, hybrid systems and artificial immune systems. A section on how to perform empirical studies; topics including statistical analysis of stochastic algorithms, and an open source library of CI algorithms. Tables, illustrations, graphs, examples, assignments, Java code implementing the algorithms, and a complete CI implementation and experimental framework. Computational Intelligence: An Introduction, Second Edition is essential reading for third and fourth year undergraduate and postgraduate students studying CI. The first edition has been prescribed by a number of overseas universities and is thus a valuable teaching tool. In addition, it will also be a useful resource for researchers in Computational Intelligence and Artificial Intelligence, as well as engineers, statisticians, operational researchers, and bioinformaticians with an interest in applying AI or CI to solve problems in their domains. Check out http://www.ci.cs.up.ac.za for examples, assignments and Java code implementing the algorithms.
Many advances have recently been made in metaheuristic methods, from theory to applications. The editors, both leading experts in this field, have assembled a team of researchers to contribute 21 chapters organized into parts on simulated annealing, tabu search, ant colony algorithms, general purpose studies of evolutionary algorithms, applications of evolutionary algorithms, and metaheuristics.
No pleasure lasts long unless there is variety in it. Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
This book is the result of a special session on constraint-handling techniques used in evolutionary algorithms within the Congress on Evolutionary Computation (CEC) in 2007. It presents recent research in constraint-handling in evolutionary optimization.
Understanding the mechanisms driving biological diversity remains a central problem in ecology and evolutionary biology. Traditional explanations assume that differences in selection pressures lead to different adaptations in geographically separated locations. This book takes a different approach and explores adaptive diversification--diversification rooted in ecological interactions and frequency-dependent selection. In any ecosystem, birth and death rates of individuals are affected by interactions with other individuals. What is an advantageous phenotype therefore depends on the phenotype of other individuals, and it may often be best to be ecologically different from the majority phenotype. Such rare-type advantage is a hallmark of frequency-dependent selection and opens the scope for processes of diversification that require ecological contact rather than geographical isolation. Michael Doebeli investigates adaptive diversification using the mathematical framework of adaptive dynamics. Evolutionary branching is a paradigmatic feature of adaptive dynamics that serves as a basic metaphor for adaptive diversification, and Doebeli explores the scope of evolutionary branching in many different ecological scenarios, including models of coevolution, cooperation, and cultural evolution. He also uses alternative modeling approaches. Stochastic, individual-based models are particularly useful for studying adaptive speciation in sexual populations, and partial differential equation models confirm the pervasiveness of adaptive diversification. Showing that frequency-dependent interactions are an important driver of biological diversity, Adaptive Diversification provides a comprehensive theoretical treatment of adaptive diversification.