The authors present an effective approach to handle some of the most common types of component imperfections encountered in industrial automation, consumer electroncis, and defence and transportation systems.
A systematic and unified presentation of the fundamentals of adaptive control theory in both continuous time and discrete time Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory. Adaptive Control Design and Analysis features: Introduction to systems and control Stability, operator norms, and signal convergence Adaptive parameter estimation State feedback adaptive control designs Parametrization of state observers for adaptive control Unified continuous and discrete-time adaptive control L1+a robustness theory for adaptive systems Direct and indirect adaptive control designs Benchmark comparison study of adaptive control designs Multivariate adaptive control Nonlinear adaptive control Adaptive compensation of actuator nonlinearities End-of-chapter discussion, problems, and advanced topics As either a textbook or reference, this self-contained tutorial of adaptive control design and analysis is ideal for practicing engineers, researchers, and graduate students alike.
Adaptive control is no longer just an important theoretical field of study, but is also providing solutions to real-world problems. Adaptive techniques will transform the world of control. The leading world practitioners of adaptive control have contributed to this handbook which is the most important work yet in this field. Not only are techniques described in theory, but detailed control algorithms are given, making this a practical cookbook of adaptive control for both control professionals and practising engineers.The book presents the most advanced techniques and algorithms of adaptive control. These include various robust techniques, performance enhancement techniques, techniques with less a-priori knowledge, nonlinear adaptive control techniques and intelligent adaptive techniques. Each technique described has been developed to provide a practical solution to a real-life problem. This volume will therefore not only advance the field of adaptive control as an area of study, but will also show how the potential of this technology can be realised and offer significant benefits. - Practical cookbook of adaptive control - Contains important research
In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.
Many of the non-smooth, non-linear phenomena covered in this well-balanced book are of vital importance in almost any field of engineering. Contributors from all over the world ensure that no one area’s slant on the subjects predominates.
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
This book shows readers new ways to compensate for disturbances in control systems prolonging the intervals between time-consuming and/or expensive fault diagnosis procedures, keeping them up to date in the increasingly important field of adaptive control.
In practice, actuators often undergo failures and various factors influence its effectiveness. Also due to the increasing complexity of large-scale systems, subsystems are often interconnected, whereas the interactions between any two subsystems are difficult to deal with. This book details a series of new methodologies of designing and analyzing adaptive backstepping control systems involving treatment on actuator failures, subsystem interactions and nonsmooth nonlinearities. Moreover, it discusses some interesting open issues in adaptive failure accommodation, decentralized adaptive control and distributed adaptive coordinated control.
This volume surveys the major results and techniques of analysis in the field of adaptive control. Focusing on linear, continuous time, single-input, single-output systems, the authors offer a clear, conceptual presentation of adaptive methods, enabling a critical evaluation of these techniques and suggesting avenues of further development. 1989 edition.