Explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression.
A new approach for defining causality and such related notions as degree of responsibility, degrees of blame, and causal explanation. Causality plays a central role in the way people structure the world; we constantly seek causal explanations for our observations. But what does it even mean that an event C “actually caused” event E? The problem of defining actual causation goes beyond mere philosophical speculation. For example, in many legal arguments, it is precisely what needs to be established in order to determine responsibility. The philosophy literature has been struggling with the problem of defining causality since Hume. In this book, Joseph Halpern explores actual causality, and such related notions as degree of responsibility, degree of blame, and causal explanation. The goal is to arrive at a definition of causality that matches our natural language usage and is helpful, for example, to a jury deciding a legal case, a programmer looking for the line of code that cause some software to fail, or an economist trying to determine whether austerity caused a subsequent depression. Halpern applies and expands an approach to causality that he and Judea Pearl developed, based on structural equations. He carefully formulates a definition of causality, and building on this, defines degree of responsibility, degree of blame, and causal explanation. He concludes by discussing how these ideas can be applied to such practical problems as accountability and program verification. Technical details are generally confined to the final section of each chapter and can be skipped by non-mathematical readers.
Causality offers the first comprehensive coverage of causal analysis in many sciences, including recent advances using graphical methods. Pearl presents a unified account of the probabilistic, manipulative, counterfactual and structural approaches to causation, and devises simple mathematical tools for analyzing the relationships between causal connections, statistical associations, actions and observations. The book will open the way for including causal analysis in the standard curriculum of statistics, artificial intelligence ...
A general formal theory of causal reasoning as a logical study of causal models, reasoning, and inference. In this book, Alexander Bochman presents a general formal theory of causal reasoning as a logical study of causal models, reasoning, and inference, basing it on a supposition that causal reasoning is not a competitor of logical reasoning but its complement for situations lacking logically sufficient data or knowledge. Bochman also explores the relationship of this theory with the popular structural equation approach to causality proposed by Judea Pearl and explores several applications ranging from artificial intelligence to legal theory, including abduction, counterfactuals, actual and proximate causality, dynamic causal models, and reasoning about action and change in artificial intelligence. As logical preparation, before introducing causal concepts, Bochman describes an alternative, situation-based semantics for classical logic that provides a better understanding of what can be captured by purely logical means. He then presents another prerequisite, outlining those parts of a general theory of nonmonotonic reasoning that are relevant to his own theory. These two components provide a logical background for the main, two-tier formalism of the causal calculus that serves as the formal basis of his theory. He presents the main causal formalism of the book as a natural generalization of classical logic that allows for causal reasoning. This provides a formal background for subsequent chapters. Finally, Bochman presents a generalization of causal reasoning to dynamic domains.
A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.
This volume addresses fundamental issues in the philosophy of science in the context of two most intriguing fields: biology and economics. Written by authorities and experts in the philosophy of biology and economics, Mechanism and Causality in Biology and Economics provides a structured study of the concepts of mechanism and causality in these disciplines and draws careful juxtapositions between philosophical apparatus and scientific practice. By exploring the issues that are most salient to the contemporary philosophies of biology and economics and by presenting comparative analyses, the book serves as a platform not only for gaining mutual understanding between scientists and philosophers of the life sciences and those of the social sciences, but also for sharing interdisciplinary research that combines both philosophical concepts in both fields. The book begins by defining the concepts of mechanism and causality in biology and economics, respectively. The second and third parts investigate philosophical perspectives of various causal and mechanistic issues in scientific practice in the two fields. These two sections include chapters on causal issues in the theory of evolution; experiments and scientific discovery; representation of causal relations and mechanism by models in economics. The concluding section presents interdisciplinary studies of various topics concerning extrapolation of life sciences and social sciences, including chapters on the philosophical investigation of conjoining biological and economic analyses with, respectively, demography, medicine and sociology.
Carolina Sartorio argues that only the actual causes of our behaviour matter to our freedom. Although this simple view of freedom clashes with most theories of responsibility, including the most prominent 'actual sequence' theories currently on offer, Sartorio argues for its truth. The key, she claims, lies in a correct understanding of the role played by causation in a view of that kind. Causation has some important features that make it a responsibility-grounding relation, and this to the success of the view. Also, when agents act freely, the actual causes are richer than they appear to be at first sight; in particular, they reflect the agents' sensitivity to reasons, where this includes both the existence of actual reasons and the absence of other (counterfactual) reasons. So acting freely requires more causes and quite complex causes, as opposed to fewer causes and simpler causes, and is compatible with those causes being deterministic. The book connects two different debates, the one on causation and the one on the problem of free will, in new and illuminating ways.
Human beings are active agents who can think. To understand how thought serves action requires understanding how people conceive of the relation between cause and effect, between action and outcome. In cognitive terms, how do people construct and reason with the causal models we use to represent our world? A revolution is occurring in how statisticians, philosophers, and computer scientists answer this question. Those fields have ushered in new insights about causal models by thinking about how to represent causal structure mathematically, in a framework that uses graphs and probability theory to develop what are called causal Bayesian networks. The framework starts with the idea that the purpose of causal structure is to understand and predict the effects of intervention. How does intervening on one thing affect other things? This is not a question merely about probability (or logic), but about action. The framework offers a new understanding of mind: Thought is about the effects of intervention and cognition is thus intimately tied to actions that take place either in the actual physical world or in imagination, in counterfactual worlds. The book offers a conceptual introduction to the key mathematical ideas, presenting them in a non-technical way, focusing on the intuitions rather than the theorems. It tries to show why the ideas are important to understanding how people explain things and why thinking not only about the world as it is but the world as it could be is so central to human action. The book reviews the role of causality, causal models, and intervention in the basic human cognitive functions: decision making, reasoning, judgment, categorization, inductive inference, language, and learning. In short, the book offers a discussion about how people think, talk, learn, and explain things in causal terms, in terms of action and manipulation.
The causal problem has become topical once again. While we are no longer causalists or believers in the universal truth of the causal principle we continue to think of causes and effects, as well as of causal and noncausal relations among them. Instead of becoming indeterminists we have enlarged determinism to include noncausal categories. And we are still in the process of characterizing our basic concepts and principles concerning causes and effects with the help of exact tools. This is because we want to explain, not just describe, the ways of things. The causal principle is not the only means of understanding the world but it is one of them.The demand for a fourth edition of this distinguished book on the subject of causality is clear evidence that this principle continues to be an important and popular area of philosophic enquiry. Non-technical and clearly written, this book focuses on the ontological problem of causality, with specific emphasis on the place of the causal principle in modern science. Mario Bunge first defines the terminology employed and describes various formulations of the causal principle. He then examines the two primary critiques of causality, the empiricist and the romantic, as a prelude to the detailed explanation of the actual assertions of causal determinism.Bunge analyzes the function of the causal principle in science, touching on such subjects as scientific law, scientific explanation, and scientific prediction. In so doing, he offers an education to layman and specialist alike on the history of a concept and its opponents. Professor William A. Wallace, author of Causality and Scientific Explanation said of an earlier edition of this work: "I regard it as a truly seminal work in this field."
A general formal theory of causal reasoning as a logical study of causal models, reasoning, and inference. In this book, Alexander Bochman presents a general formal theory of causal reasoning as a logical study of causal models, reasoning, and inference, basing it on a supposition that causal reasoning is not a competitor of logical reasoning but its complement for situations lacking logically sufficient data or knowledge. Bochman also explores the relationship of this theory with the popular structural equation approach to causality proposed by Judea Pearl and explores several applications ranging from artificial intelligence to legal theory, including abduction, counterfactuals, actual and proximate causality, dynamic causal models, and reasoning about action and change in artificial intelligence. As logical preparation, before introducing causal concepts, Bochman describes an alternative, situation-based semantics for classical logic that provides a better understanding of what can be captured by purely logical means. He then presents another prerequisite, outlining those parts of a general theory of nonmonotonic reasoning that are relevant to his own theory. These two components provide a logical background for the main, two-tier formalism of the causal calculus that serves as the formal basis of his theory. He presents the main causal formalism of the book as a natural generalization of classical logic that allows for causal reasoning. This provides a formal background for subsequent chapters. Finally, Bochman presents a generalization of causal reasoning to dynamic domains.