Actions and Invariants of Algebraic Groups

Actions and Invariants of Algebraic Groups

Author: Walter Ricardo Ferrer Santos

Publisher: CRC Press

Published: 2017-09-19

Total Pages: 479

ISBN-13: 1482239167

DOWNLOAD EBOOK

Actions and Invariants of Algebraic Groups, Second Edition presents a self-contained introduction to geometric invariant theory starting from the basic theory of affine algebraic groups and proceeding towards more sophisticated dimensions." Building on the first edition, this book provides an introduction to the theory by equipping the reader with the tools needed to read advanced research in the field. Beginning with commutative algebra, algebraic geometry and the theory of Lie algebras, the book develops the necessary background of affine algebraic groups over an algebraically closed field, and then moves toward the algebraic and geometric aspects of modern invariant theory and quotients.


Lie Groups and Geometric Aspects of Isometric Actions

Lie Groups and Geometric Aspects of Isometric Actions

Author: Marcos M. Alexandrino

Publisher: Springer

Published: 2015-05-22

Total Pages: 215

ISBN-13: 3319166131

DOWNLOAD EBOOK

This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.


Finite Group Theory

Finite Group Theory

Author: I. Martin Isaacs

Publisher: American Mathematical Society

Published: 2023-01-24

Total Pages: 368

ISBN-13: 1470471604

DOWNLOAD EBOOK

The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur–Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem. Topics that seldom (or never) appear in books are also covered. These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the “principal ideal theorem” of transfer theory and many smaller results that are not very well known. Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it. Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Pólya Lecturer in 2003–2005.


Applied Finite Group Actions

Applied Finite Group Actions

Author: Adalbert Kerber

Publisher: Springer Science & Business Media

Published: 1999-08-18

Total Pages: 488

ISBN-13: 9783540659419

DOWNLOAD EBOOK

Written by one of the top experts in the fields of combinatorics and representation theory, this book distinguishes itself from the existing literature by its applications-oriented point of view. The second edition is extended, placing more emphasis on applications to the constructive theory of finite structures. Recent progress in this field, in particular in design and coding theory, is described.


A Book of Abstract Algebra

A Book of Abstract Algebra

Author: Charles C Pinter

Publisher: Courier Corporation

Published: 2010-01-14

Total Pages: 402

ISBN-13: 0486474178

DOWNLOAD EBOOK

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.


Lie Groups

Lie Groups

Author: Claudio Procesi

Publisher: Springer Science & Business Media

Published: 2006-10-12

Total Pages: 616

ISBN-13: 0387260404

DOWNLOAD EBOOK

Lie groups has been an increasing area of focus and rich research since the middle of the 20th century. In Lie Groups: An Approach through Invariants and Representations, the author's masterful approach gives the reader a comprehensive treatment of the classical Lie groups along with an extensive introduction to a wide range of topics associated with Lie groups: symmetric functions, theory of algebraic forms, Lie algebras, tensor algebra and symmetry, semisimple Lie algebras, algebraic groups, group representations, invariants, Hilbert theory, and binary forms with fields ranging from pure algebra to functional analysis. By covering sufficient background material, the book is made accessible to a reader with a relatively modest mathematical background. Historical information, examples, exercises are all woven into the text. This unique exposition is suitable for a broad audience, including advanced undergraduates, graduates, mathematicians in a variety of areas from pure algebra to functional analysis and mathematical physics.


Differential Geometry and Lie Groups

Differential Geometry and Lie Groups

Author: Jean Gallier

Publisher: Springer Nature

Published: 2020-08-14

Total Pages: 777

ISBN-13: 3030460401

DOWNLOAD EBOOK

This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors’ companion volume Differential Geometry and Lie Groups: A Second Course.


Social Action in Group Work

Social Action in Group Work

Author: Abe Vinik

Publisher: Routledge

Published: 2012-10-12

Total Pages: 241

ISBN-13: 1136582770

DOWNLOAD EBOOK

One of the most effective ways of dealing with social problems is getting rid of the cause of the problem, not just finding a remedy for the result. Social Action in Group Work provides a useful overview of the history, philosophy, theory, and practice of social group work and action in the promotion of societal change. It shows practitioners how to use their skills effectively to achieve social change. This helpful book incorporates ideas developed in social movements, identifies their contributions to social group work practice, and illustrates effective practice in case experience with specific examples. It provides a much-needed understanding of the need for and process of social action, along with new ideas for theory building, teaching, and practice in group work. Numerous case examples from a variety of different settings become models that will be extremely useful for social work students, educators, professionals, and those who work directly with groups.This invigorating book is divided into three sections, each with a unique focus, and tied together by overlapping concepts, theories, and models. The first section, Ideas of Social Action, examines the history of social action in group work and proposes an integrated global framework for social work organization, education and practice. Advocacy and Empowerment, the middle section, is replete with case examples. The third section, Principles and Practice, explores the application of social group work in a variety of situations, including inter-ethnic conflict and a group of homeless men and women. Together, the sections make a strong stand for a more sensitive, empowerment oriented practice and for more advocacy by the worker and group. Everyone involved or interested in the process of social change through social action with groups will find Social Action in Group Work a wealth of practical information.