Turbulent Drag Reduction by Surfactant Additives

Turbulent Drag Reduction by Surfactant Additives

Author: Feng-Chen Li

Publisher: John Wiley & Sons

Published: 2012-01-10

Total Pages: 233

ISBN-13: 1118181115

DOWNLOAD EBOOK

Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-reducing additives are usually viscoelastic fluids having complicated rheological properties. Exploring the characteristics of drag-reduced turbulent flows calls for uniquely designed experimental and numerical simulation techniques and elaborate theoretical considerations. Pertinently understanding the turbulent drag reduction mechanism necessities mastering the fundamentals of turbulence and establishing a proper relationship between turbulence and the rheological properties induced by additives. Promoting the applications of the drag reduction phenomenon requires the knowledge from different fields such as chemical engineering, mechanical engineering, municipal engineering, and so on. This book gives a thorough elucidation of the turbulence characteristics and rheological behaviors, theories, special techniques and application issues for drag-reducing flows by surfactant additives based on the state-of-the-art of scientific research results through the latest experimental studies, numerical simulations and theoretical analyses. Covers turbulent drag reduction, heat transfer reduction, complex rheology and the real-world applications of drag reduction Introduces advanced testing techniques, such as PIV, LDA, and their applications in current experiments, illustrated with multiple diagrams and equations Real-world examples of the topic’s increasingly important industrial applications enable readers to implement cost- and energy-saving measures Explains the tools before presenting the research results, to give readers coverage of the subject from both theoretical and experimental viewpoints Consolidates interdisciplinary information on turbulent drag reduction by additives Turbulent Drag Reduction by Surfactant Additives is geared for researchers, graduate students, and engineers in the fields of Fluid Mechanics, Mechanical Engineering, Turbulence, Chemical Engineering, Municipal Engineering. Researchers and practitioners involved in the fields of Flow Control, Chemistry, Computational Fluid Dynamics, Experimental Fluid Dynamics, and Rheology will also find this book to be a much-needed reference on the topic.


Drag Reduction of Turbulent Flows by Additives

Drag Reduction of Turbulent Flows by Additives

Author: A. Gyr

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 243

ISBN-13: 9401712956

DOWNLOAD EBOOK

Drag Reduction of Turbulent Flows by Additives is the first treatment of the subject in book form. The treatment is extremely broad, ranging from physicochemical to hydromechanical aspects. The book shows how fibres, polymer molecules or surfactants at very dilute concentrations can reduce the drag of turbulent flow, leading to energy savings. The dilute solutions are considered in terms of the physical chemistry and rheology, and the properties of turbulent flows are presented in sufficient detail to explain the various interaction mechanisms. Audience: Those active in fundamental research on turbulence and those seeking to apply the effects described. Fluid mechanical engineers, rheologists, those interested in energy saving methods, or in any other application in which the flow rate in turbulent flow should be increased.


Structure of Turbulence and Drag Reduction

Structure of Turbulence and Drag Reduction

Author: Albert Gyr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 617

ISBN-13: 3642509711

DOWNLOAD EBOOK

In 1976 a similar titled IUTAM Symposium (Structure of Turbulence and Drag Reduction) was held in Washington . However, the progress made during the last thirteen years as weil as the much promising current research desired a second one this year. In Washington drag reduction by additives and by direct manipulation of the walls (compliant walls and heated surfaces) were discussed. In the meantime it became evident that drag reduction also occurs when turbulence is influenced by geometrical means, e.g. by influencing the pressure distribution by the shape of the body (airfoils) or by the introduction of streamwise perturbances on a body (riblets). In the recent years turbulence research has seen increasing attention being focused on the investigation of coherent structures, mainly in Newtonian fluids. We all know that these structures are a significant feature of turbulent flows, playing an important role in the energy balance in such flows. However their place in turbulence theories as weil as the factors influencing their development are still poorly understood. Consequently, the investigation of phenomena in which the properties of coherent structures are alte red provides a promising means of improving our understanding of turbulent flows in general.