This paper considers wireless sensor (hyper)networks by single–valued neutrosophic (hyper)graphs. It tries to extend the notion of single– valued neutrosophic graphs to single–valued neutrosophic hypergraphs and it is derived single–valued neutrosophic graphs from single–valued neutrosophic hypergraphs via positive equivalence relation.
This paper introduces the novel concept of KM-single valued neutrosophic metric spaces as an especial generalization of KM-fuzzy metric spaces, investigates several topological and structural properties and presents some of its applications. This study also considers the metric spaces and constructs KM-single valued neutrosophic spaces with respect to any given triangular norms and triangular conorms.
In this paper we consider the concept of KM-fuzzy metric spaces and we introduce a novel concept of KM-single valued neutrosophic metric graphs based on KM-fuzzy metric spaces. Then we investigate the nite KM-fuzzy metric spaces with respect to KM-fuzzy metrics and we construct the KM-fuzzy metric spaces on any given non-empty sets. We try to extend the concept of KM-fuzzy metric spaces to a larger class of KM-fuzzy metric spaces such as union and product of KM-fuzzy metric spaces and in this regard we investigate the class of products of KM-single valued neutrosophic metric graphs. In the nal, we dene some operations such as tensor product, Cartesian product, semi-strong product, strong product, union, semi-ring sum, suspension, and complement of KM-single valued neutrosophic metric graphs.
This paper introduces the concept of single–valued neutrosophic EQ–subalgebras, single–valued neutrosophic EQ–prefilters and single–valued neutrosophic EQ–filters. We study some properties of single–valued neutrosophic EQ–prefilters and show how to construct single–valued neutrosophic EQ–filters. Finally, the relationship between single–valued neutrosophic EQ–filters and EQ–filters are studied.
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields, such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics, or extenics, comprising 936 pages, published between 2008-2022 in different scientific journals or currently in press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26 countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso, Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos Díaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Özel, Pankaj Chauhan, Victor Christianto, Salvador Coll, Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Daniela Gîfu, Rafael Rojas Gualdrón, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernández, Abdel-Nasser Hussein, Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M. Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro López, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martínez, Marcel Migdalovici, Kritika Mishra, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey, Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan Thao, Rishwanth Mani Parimala, Ion Pătrașcu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei, Nimitha Rajesh, Jesús Estupiñan Ricardo, Juan Miguel Martínez Rubio, Saeed Mirvakili, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Săvoiu, Ganeshsree Selvachandran, Seok-Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vázquez, V. Venkateswara Rao, Luige Vlădăreanu, Victor Vlădăreanu, Gabriela Vlădeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani, Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This book offers a comprehensive reference guide for modeling humanoid robots using intelligent and fuzzy systems. It provides readers with the necessary intelligent and fuzzy tools for controlling humanoid robots by incomplete, vague, and imprecise information or insufficient data, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including fuzzy control, metaheuristic-based control, neutrosophic control, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on humanoid robots. Moreover, by extending all the main aspects of humanoid robots to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.
The concept of (quasi) superhypergraphs as a generalization of graphs makes a relation between some sets of elements in detail and in general (in the form of parts to parts, parts to whole, and whole to whole elements of sets) and is very useful in the real world. This paper considers the novel concept of (quasi) superhypergraphs and introduces the notation of dominating set and domination number of (quasi) super-hypergraphs. Especially, we have analyzed the domination number of uniform (quasi) superhypergraphs and computed their domination number on different cases. The ows (from right to left, from left to right, and two-sided) as maps play a main role in (quasi) superhypergraphs and it is proved that domination numbers of (quasi) superhypergraphs are dependent on the flows. We define the valued-star (quasi) superhyper-graphs for the design of hypernetworks and compute their domination numbers. We have shown that the domination numbers of valued-star (quasi) superhypergraphs are distinct in different flow states. In final, we introduce some applications of dominating sets of (quasi) superhyper-graphs in hypernetwork as computer networks and treatment networks with the optimal application.
This paper explores the defects in fuzzy (hyper) graphs (as complex (hyper) networks) and extends the fuzzy (hyper) graphs to fuzzy (quasi) superhypergraphs as a new concept.We have modeled the fuzzy superhypergraphs as complex superhypernetworks in order to make a relation between labeled objects in the form of details and generalities. Indeed, the structure of fuzzy (quasi) superhypergraphs collects groups of labeled objects and analyzes them in the form of the part to part of objects, the part of objects to the whole group of objects, and the whole to the whole group of objects at the same time. We have investigated the properties of fuzzy (quasi) superhypergraphs based on any positive real number as valued fuzzy (quasi) superhypergraphs, considering the complement of valued fuzzy (quasi) superhypergraphs, the notation of isomorphism of valued fuzzy (quasi) superhypergraphs based on the permutations, and we have presented the isomorphic conditions of (self complemented) valued fuzzy (quasi) superhypergraphs. The concept of impact membership value of fuzzy (quasi) superhypergraphs is introduced in this study and it is applied in designing the real problem in the real world. Finally, the problem of business superhypernetworks is presented as an application of fuzzy valued quasi superhypergraphs in the real world.