Biochemical Sites of Insecticide Action and Resistance

Biochemical Sites of Insecticide Action and Resistance

Author: Isaac Ishaaya

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 353

ISBN-13: 3642595499

DOWNLOAD EBOOK

In recent years many of the conventional methods of insect control by broad spectrum synthetic chemicals have come under scrutiny because of their unde sirable effects on human health and the environment. In addition, some classes of pesticide chemistry, which generated resistance problems and severely affected the environment, are no longer used. It is against this background that the authors of this book present up-to-date findings-relating to biochemical sites that can serve as targets for developing insecticides with selective prop erties, and as the basis for the elucidation of resistance mechanisms and countermeasures. The book consists of eight chapters relating to biochemical targets for insec ticide action and seven chapters relating to biochemical modes of resistance and countermeasures. The authors of the chapters are world leaders in pesti cide chemistry, biochemical modes of action and mechanisms of resistance. Biochemical sites such as chitin formation, juvenile hormone and ecdysone receptors, acetylcholine and GABA receptors, ion channels, and neuropeptides are potential targets for insecticide action. The progress made in recent years in molecular biology (presented in depth in this volume) has led to the iden tification of genes that confer mechanisms of resistance, such as increased detoxification, decreased penetration and insensitive target sites. A combina tion of factors can lead to potentiation of the resistance level. Classifications of these mechanisms are termed gene amplification, changes in structural genes, and modification of gene expression.


Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor

Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor

Author: I. Yamamoto

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 300

ISBN-13: 4431679332

DOWNLOAD EBOOK

The nicotinoids are the most important new class of pesticides, joining the organophosphorus compounds, methylcarbamates, and pyrethroids as the major insecticides. Recently, imidacloprid and related nicotinoids have begun replacing organophosphorus and methylcarbamate compounds as insecticides to control insect pests on major crops. Nicotinoids act on the nicotinic acetylcholine receptor, as does naturally occurring nicotine, but with remarkable effectiveness against insects while being safe for mammals; they are quickly degraded and do not persist in the environment. This volume describes the relationship of nicotinoids to botanical insecticidal alkaloids, their discovery and development as insecticides, and the prospects for their expanded use and for the development of resistance. This book is the first to provide concise, comprehensive information on nicotinoids, their chemistry, mode of action, metabolism, and application in agriculture.


The Role of Post-transcriptional Modifications of Nicotinic Acetylcholine Receptor Subunits on the Toxicity of Spinosad and Imidacloprid

The Role of Post-transcriptional Modifications of Nicotinic Acetylcholine Receptor Subunits on the Toxicity of Spinosad and Imidacloprid

Author: Frank David Rinkevich

Publisher:

Published: 2012

Total Pages: 219

ISBN-13:

DOWNLOAD EBOOK

Spinosad and imidacloprid are two of the most widely used insecticides. Both of these compounds act at the nicotinic acetylcholine receptor through mechanisms unique to each insecticide. High levels of resistance have been reported from a number of important agricultural and economic pests across the globe, often within a few years after the introduction of these insecticides. Studies with laboratory created strains of Drosophila melanogaster indicate spinosad targets nicotinic acetylcholine receptors that contain the D[alpha]6 subunit. In an effort to validate these laboratory findings, I sequenced the Pxyl[alpha]6 subunit from the field collected Pearl-Sel strain of diamondback moth, Plutella xylostella, which has more than 18,000-fold resistance to spinosad. The Pxyl[alpha]6 subunit in Pearl-Sel possesses numerous premature stop codons that are unseen in two other spinosad susceptible strains. These truncated transcripts are genetically associated with spinosad resistance through the use of the F2 backcross-bioassay method. I chose to utilize RNAi in the red flour beetle, Tribolium castaneum, to systematically investigate the role of other nicotinic acetylcholine receptor subunits on toxicity of spinosad because RNAi is very robust in this species. I cloned of all 12 nAChR subunits in T. castaneum to use as templates for the production of dsRNA to use in RNAi. Sequencing these transcripts revealed a diverse array of posttranscriptional modifications such as alternative and cassette exon use, intron retention, intron 3[PRIME] splice site variations, and a vast number of alleles. I used this information to design effective RNAi for the Tcas[alpha]6 because my work on P. xylostella, and other work on D. melanogaster indicate that [alpha]6 null mutants are resistant to spinosad. RNAi was induced by injecting double stranded RNA for Tcas[alpha]6 into pupae of T. castaneum. Silencing of Tcas[alpha]6 produced no change in spinosad LC50 values despite a reduction in the expression of Tcas[alpha]6. To confirm this result, RNAi against the D[alpha]6 subunit of D. melanogaster was performed using the Gal4-UAS system. There was no change in spinosad sensitivity in flies due to D[alpha]6 silencing despite a significant reduction in D[alpha]6 expression. These results indicate that RNAi against nicotinic acetylcholine receptors is not a feasible system to study the effect of specific subunits on insecticide sensitivity due to the large differences in the expression of nicotinic acetylcholine receptors and the RNAi machinery. The Gal4-UAS system was utilized to silence the expression of Adenosine Deaminase Acting on RNA (ADAR) in different tissues of D. melanogaster. I chose this approach because it has been demonstrated that the Gal4-UAS system is effective at reducing the expression of ADAR, the level of ADAR expression is similar to the expression level of the RNAi machinery, and A-to-I RNA editing may be a factor in insecticide resistance. These ADAR-deficient flies were subject to spinosad and imidacloprid bioassays. Ubiquitous reduction in ADAR resulted in decreased spinosad insensitivity, while reduction in ADAR in cholinergic neurons and muscle increased spinosad insensitivity. Reduction of ADAR expression in cholinergic neurons, muscle, and glia increased imidacloprid insensitivity. These results indicate that editing is an important factor in insecticide insensitivity and the effect of editing is not spatially homogenous in the fly. I used the peak height ratio method to estimate the frequency of A-to-I RNA editing to ensure the rate of editing was reduced via the Gal4-UAS system. The use of an antisense primer showed very accurate and precise measurements of A-to-I RNA editing based on known editing rates. The accuracy and precision was consistent across different editing sites and expected editing frequencies. This method is more cost and time effective in comparison to other contemporary methods. These results provide valuable insight into understanding and managing insecticide resistance. Firstly, they validate the use of a model organism to predict resistance in the instance of spinosad resistance. Secondly, they suggest that RNAi of nAChRs is not a suitable technique to evaluate target sites of spinosad and imidacloprid. Thirdly, A-to-I RNA editing affects the toxicity of spinosad and imidacloprid that varies depending on the tissues where it is expressed. These results will be of utmost importance in studies on population genetics, physiology, neurobiology, and mechanisms of insecticide resistance.


Insect Nicotinic Acetylcholine Receptors

Insect Nicotinic Acetylcholine Receptors

Author: Steeve Hervé Thany

Publisher: Springer Science & Business Media

Published: 2011-01-11

Total Pages: 127

ISBN-13: 1441964452

DOWNLOAD EBOOK

The aim of this book is to summarize our understanding on the insect nicotinic acetylcholine receptors. This area of research received great impetus from the identification of the first subunit sequences to be used as neonicotinoid insecticide target sites. Although a book of this nature can provide the details only of commonly published results, it is hoped that it may provide a useful guide to the newcomer to the field as well as to point out some of the future challenges. For example, we need to determine the precise subunit nomenclature of insect nicotinic receptors. This nomenclature varies amongst species and this led to some of the early confusion that persists. We need to be precise in identifying the subunit composition of native insect nicotinic receptor subtypes, their functional properties and physiological roles.


Insect Nicotinic Acetylcholine Receptors

Insect Nicotinic Acetylcholine Receptors

Author: Steeve Hervé Thany

Publisher: Springer

Published: 2010-05-07

Total Pages: 118

ISBN-13: 9781441964441

DOWNLOAD EBOOK

The aim of this book is to summarize our understanding on the insect nicotinic acetylcholine receptors. This area of research received great impetus from the identification of the first subunit sequences to be used as neonicotinoid insecticide target sites. Although a book of this nature can provide the details only of commonly published results, it is hoped that it may provide a useful guide to the newcomer to the field as well as to point out some of the future challenges. For example, we need to determine the precise subunit nomenclature of insect nicotinic receptors. This nomenclature varies amongst species and this led to some of the early confusion that persists. We need to be precise in identifying the subunit composition of native insect nicotinic receptor subtypes, their functional properties and physiological roles.


Insecticides with Novel Modes of Action

Insecticides with Novel Modes of Action

Author: Isaac Ishaaya

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 442

ISBN-13: 3662035650

DOWNLOAD EBOOK

The future of insect control looked very bright in the 1950s and 1960s with new insecticides constantly coming onto the market. Today, however, whole classes of pesticide chemistry have fallen by the wayside due to misuse which generated resistance problems reaching crisis proportions, severe adverse effects on the environment, and public outcry that has led to increasingly stricter regulation and legislation. It is with this background, demanding the need for safer, environmentally friendly pesticides and new strategies to reduce resistance problems, that this book was written. The authors of the various chapters have a wealth of experience in pesticide chemistry, biochemical modes of action, mechanism of resistance and application, and have presented concise reviews. Each is actively involved in thedevelopment of new groups of pesticide chemistry which led to the development of novel insecticides with special impact in controlling agricultural pests. Emphasis has been given to insecticides with selective properties, such as insect growth regulators hormone mimics, ecdysone agonists), (chitin synthesis inhibitors, juvenile chloronicotinyl insecticides (imidacloprid, acetamiprid), botanical insecticides (neem, plant oils), pymetrozine, diafenthiuron, pyrrole insecticides, and others. The importance of these compounds, as components in integrated pest management programs and in insecticide resistance management strategies, is discussed. The data presented are essential in establishing new technologies and developing novel groups of compounds which will have impact on our future agricultural practices.


Biomarkers in Toxicology

Biomarkers in Toxicology

Author: Ramesh C Gupta

Publisher: Academic Press

Published: 2014-01-25

Total Pages: 1149

ISBN-13: 0124046495

DOWNLOAD EBOOK

Biomarkers in Toxicology is a timely and comprehensive reference dedicated to all aspects of biomarkers that relate to chemical exposure and their effects on biological systems. This book includes both vertebrate and non-vertebrate species models for toxicological testing and development of biomarkers. Divided into several key sections, this reference volume contains chapters devoted to topics in molecular-cellular toxicology, as well as a look at the latest cutting-edge technologies used to detect biomarkers of exposure and effects. Each chapter also contains several references to the current literature and important resources for further reading. Given this comprehensive treatment, Biomarkers in Toxicology is an essential reference for all those interested in biomarkers across several scientific and biomedical fields. Written by international experts who have evaluated the expansive literature to provide you with one resource covering all aspects of toxicology biomarkers Identifies and discusses the most sensitive, accurate, unique and validated biomarkers used as indicators of exposure and effect of chemicals of different classes Covers special topics and applications of biomarkers, including chapters on molecular toxicology biomarkers, biomarker analysis for nanotoxicology, development of biomarkers for drug efficacy evaluation and much more


Recent Highlights in the Discovery and Optimization of Crop Protection Products

Recent Highlights in the Discovery and Optimization of Crop Protection Products

Author: Peter Maienfisch

Publisher: Academic Press

Published: 2021-03-24

Total Pages: 647

ISBN-13: 0128210362

DOWNLOAD EBOOK

Recent Highlights in the Discovery and Optimization of Crop Protection Products highlights the most prominent, recent results in the search for safe and effective new crop protection products. With a focus on the design, synthesis, optimization and/or structure-activity relationships of new chemistries targeting insect, disease, weed, nematode, vector and animal parasite control, the book also includes recent developments in crop enhancement chemistries and new approaches to crop protection products. The inclusion of information on testing tools, green chemistry approaches, and the latest discovery tools, like modeling, structure-based design, and testing tools makes this volume complete. Based on key presentations given at the 14th International IUPAC conference on Crop Protection, May 19-24, 2019 in Ghent, Belgium, this book includes the many exciting new discoveries and findings reported. It is designed to inspire additional research and advancement in the field. Based on science presented at the 2019 International Union of Pure and Applied Chemistry Conference on Crop Protection Provides real-world perspectives on pesticide and disease control progress Presents scientific developments from an international array of contributing authors