Accuracy Study of Finite Difference Methods
Author: Nancy Jane Cyrus
Publisher:
Published: 1968
Total Pages: 36
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Nancy Jane Cyrus
Publisher:
Published: 1968
Total Pages: 36
ISBN-13:
DOWNLOAD EBOOKAuthor: Randall J. LeVeque
Publisher: SIAM
Published: 2007-01-01
Total Pages: 356
ISBN-13: 9780898717839
DOWNLOAD EBOOKThis book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Author: Bertil Gustafsson
Publisher: John Wiley & Sons
Published: 2013-07-18
Total Pages: 464
ISBN-13: 1118548523
DOWNLOAD EBOOKPraise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.
Author: Boško S. Jovanović
Publisher: Springer Science & Business Media
Published: 2013-10-22
Total Pages: 416
ISBN-13: 1447154606
DOWNLOAD EBOOKThis book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
Author:
Publisher: Bookboon
Published:
Total Pages: 144
ISBN-13: 8776816427
DOWNLOAD EBOOKAuthor: Daniel J. Duffy
Publisher: John Wiley & Sons
Published: 2013-10-28
Total Pages: 452
ISBN-13: 1118856481
DOWNLOAD EBOOKThe world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Author: John C. Strikwerda
Publisher: Springer
Published: 1989-09-28
Total Pages: 410
ISBN-13:
DOWNLOAD EBOOKAuthor: Hans Petter Langtangen
Publisher: Springer
Published: 2017-06-21
Total Pages: 522
ISBN-13: 3319554565
DOWNLOAD EBOOKThis book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.
Author: Zhilin Li
Publisher: Cambridge University Press
Published: 2017-11-30
Total Pages: 305
ISBN-13: 1107163226
DOWNLOAD EBOOKA practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.
Author: Peter Moczo
Publisher: Cambridge University Press
Published: 2014-04-24
Total Pages: 387
ISBN-13: 1107028817
DOWNLOAD EBOOKA systematic tutorial introduction to the finite-difference (FD) numerical modelling technique for professionals, academic researchers, and graduate students in seismology.