Accuracy and Stability of Numerical Algorithms

Accuracy and Stability of Numerical Algorithms

Author: Nicholas J. Higham

Publisher: SIAM

Published: 2002-08-01

Total Pages: 690

ISBN-13: 0898715210

DOWNLOAD EBOOK

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.


Numerical Algorithms

Numerical Algorithms

Author: Justin Solomon

Publisher: CRC Press

Published: 2015-06-24

Total Pages: 400

ISBN-13: 1482251892

DOWNLOAD EBOOK

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig


MATLAB Guide

MATLAB Guide

Author: Desmond J. Higham

Publisher: SIAM

Published: 2016-12-27

Total Pages: 485

ISBN-13: 1611974658

DOWNLOAD EBOOK

MATLAB is an interactive system for numerical computation that is widely used for teaching and research in industry and academia. It provides a modern programming language and problem solving environment, with powerful data structures, customizable graphics, and easy-to-use editing and debugging tools. This third edition of MATLAB Guide completely revises and updates the best-selling second edition and is more than 30 percent longer. The book remains a lively, concise introduction to the most popular and important features of MATLAB and the Symbolic Math Toolbox. Key features are a tutorial in Chapter 1 that gives a hands-on overview of MATLAB; a thorough treatment of MATLAB mathematics, including the linear algebra and numerical analysis functions and the differential equation solvers; and a web page at http://www.siam.org/books/ot150 that provides example program files, updates, and links to MATLAB resources. The new edition contains color figures throughout; includes pithy discussions of related topics in new ?Asides" boxes that augment the text; has new chapters on the Parallel Computing Toolbox, object-oriented programming, graphs, and large data sets; covers important new MATLAB data types such as categorical arrays, string arrays, tall arrays, tables, and timetables; contains more on MATLAB workflow, including the Live Editor and unit tests; and fully reflects major updates to the MATLAB graphics system. This book is suitable for both beginners and more experienced users, including students, researchers, and practitioners.


Accuracy and Stability of Numerical Algorithms

Accuracy and Stability of Numerical Algorithms

Author: Nicholas J. Higham

Publisher: SIAM

Published: 2002-01-01

Total Pages: 710

ISBN-13: 9780898718027

DOWNLOAD EBOOK

Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.


A Graduate Introduction to Numerical Methods

A Graduate Introduction to Numerical Methods

Author: Robert M. Corless

Publisher: Springer Science & Business Media

Published: 2013-12-12

Total Pages: 896

ISBN-13: 1461484537

DOWNLOAD EBOOK

This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. “I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis” has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.


Numerical Matrix Analysis

Numerical Matrix Analysis

Author: Ilse C. F. Ipsen

Publisher: SIAM

Published: 2009-07-23

Total Pages: 135

ISBN-13: 0898716764

DOWNLOAD EBOOK

Matrix analysis presented in the context of numerical computation at a basic level.


Numerical Analysis with Algorithms and Programming

Numerical Analysis with Algorithms and Programming

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 391

ISBN-13: 1498741835

DOWNLOAD EBOOK

Numerical Analysis with Algorithms and Programming is the first comprehensive textbook to provide detailed coverage of numerical methods, their algorithms, and corresponding computer programs. It presents many techniques for the efficient numerical solution of problems in science and engineering. Along with numerous worked-out examples, end-of-chapter exercises, and Mathematica® programs, the book includes the standard algorithms for numerical computation: Root finding for nonlinear equations Interpolation and approximation of functions by simpler computational building blocks, such as polynomials and splines The solution of systems of linear equations and triangularization Approximation of functions and least square approximation Numerical differentiation and divided differences Numerical quadrature and integration Numerical solutions of ordinary differential equations (ODEs) and boundary value problems Numerical solution of partial differential equations (PDEs) The text develops students’ understanding of the construction of numerical algorithms and the applicability of the methods. By thoroughly studying the algorithms, students will discover how various methods provide accuracy, efficiency, scalability, and stability for large-scale systems.


Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods

Author: David Gottlieb

Publisher: SIAM

Published: 1977-01-01

Total Pages: 167

ISBN-13: 0898710235

DOWNLOAD EBOOK

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws

Author: Jan S. Hesthaven

Publisher: SIAM

Published: 2018-01-30

Total Pages: 571

ISBN-13: 1611975107

DOWNLOAD EBOOK

Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.


The Concept of Stability in Numerical Mathematics

The Concept of Stability in Numerical Mathematics

Author: Wolfgang Hackbusch

Publisher: Springer Science & Business Media

Published: 2014-02-06

Total Pages: 202

ISBN-13: 3642393861

DOWNLOAD EBOOK

In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.