Accelerator Physics (Fourth Edition)

Accelerator Physics (Fourth Edition)

Author: Shyh-yuan Lee

Publisher: World Scientific Publishing

Published: 2018-11-15

Total Pages: 569

ISBN-13: 9813274697

DOWNLOAD EBOOK

Research and development of high energy accelerators began in 1911. Since then, progresses achieved are:The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Hamiltonian dynamics is used to understand beam manipulation, instability and nonlinearity. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.


Particle Accelerator Physics I

Particle Accelerator Physics I

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 465

ISBN-13: 3662038277

DOWNLOAD EBOOK

In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.


Handbook of Accelerator Physics and Engineering

Handbook of Accelerator Physics and Engineering

Author: Alex Chao

Publisher: World Scientific

Published: 1999

Total Pages: 702

ISBN-13: 9789810235000

DOWNLOAD EBOOK

Edited by internationally recognized authorities in the field, this handbook focuses on Linacs, Synchrotrons and Storage Rings and is intended as a vade mecum for professional engineers and physicists engaged in these subjects. Here one will find, in addition to the common formulae of previous compilations, hard to find specialized formulae, recipes and material data pooled from the lifetime experiences of many of the world's most able practitioners of the art and science of accelerator building and operation.


An Introduction to the Physics of High Energy Accelerators

An Introduction to the Physics of High Energy Accelerators

Author: D. A. Edwards

Publisher: John Wiley & Sons

Published: 2008-11-20

Total Pages: 304

ISBN-13: 3527617280

DOWNLOAD EBOOK

The first half deals with the motion of a single particle under the influence of electronic and magnetic fields. The basic language of linear and circular accelerators is developed. The principle of phase stability is introduced along with phase oscillations in linear accelerators and synchrotrons. Presents a treatment of betatron oscillations followed by an excursion into nonlinear dynamics and its application to accelerators. The second half discusses intensity dependent effects, particularly space charge and coherent instabilities. Includes tables of parameters for a selection of accelerators which are used in the numerous problems provided at the end of each chapter.


Accelerator Health Physics

Accelerator Health Physics

Author: H. Wade Patterson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 685

ISBN-13: 0323143482

DOWNLOAD EBOOK

Accelerator Health Physics tackles the importance of health physics in the field of nuclear physics, especially to those involved with the use of particle accelerators. The book first explores concepts in nuclear physics, such as fundamental particles, radiation fields, and the responses of the human body to radiation exposure. The book then shifts to its intended purpose and discusses the uses of particle accelerators and the radiation they emit; the measurement of the radiation fields - radiation detectors, the history, design, and application of accelerator shielding; and measures in the implementation of a health physics program. The text is recommended for health physicists who want to learn more about particle accelerators, their effects, and how these effects can be prevented. The book is also beneficial to physicists whose work involves particle accelerators, as the book aims to educate them about the hazards they face in the workplace.


Hands-On Accelerator Physics Using MATLAB®

Hands-On Accelerator Physics Using MATLAB®

Author: Volker Ziemann

Publisher: CRC Press

Published: 2019-04-29

Total Pages: 357

ISBN-13: 0429957467

DOWNLOAD EBOOK

Awarded one of BookAuthority's best new Particle Physics books in 2019! Hands-On Accelerator Physics Using MATLAB® provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for acceleration, beam diagnostics, and vacuum are covered. Beam dynamics topics ranging from the beam-beam interaction to free-electron lasers are discussed. Theoretical concepts and the design of key components are explained with the help of MATLAB® code. Practical topics, such as beam size measurements, magnet construction and measurements, and radio-frequency measurements are explored in student labs without requiring access to an accelerator. This unique approach provides a look at what goes on 'under the hood' inside modern accelerators and presents readers with the tools to perform their independent investigations on the computer or in student labs. This book will be of interest to graduate students, postgraduate researchers studying accelerator physics, as well as engineers entering the field. Features: Provides insights into both synchrotron light sources and colliders Discusses technical subsystems, including magnets, radio-frequency engineering, instrumentation and diagnostics, correction of imperfections, control, and cryogenics Accompanied by MATLAB® code, including a 3D-modeler to visualize the accelerators, and additional appendices which are available on the CRC Press website MATLAB live-scripts to accompany the book can be found here: https://ziemann.web.cern.ch/ziemann/mybooks/mlx/


A Practical Introduction to Beam Physics and Particle Accelerators

A Practical Introduction to Beam Physics and Particle Accelerators

Author: Santiago Bernal

Publisher: Morgan & Claypool Publishers

Published: 2018-10-26

Total Pages: 149

ISBN-13: 1643270907

DOWNLOAD EBOOK

This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations. The examples and computer exercises comprise basic lenses and deflectors, fringe fields, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances, and transverse and longitudinal emittance and space charge. The last chapter presents examples of two major types of particle accelerators: radio frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives readers a brief description of the computer tools employed and concise instructions for their installation and use in the most popular computer platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are also included. An essential component of the book is its website (actually part of the author's website at the University of Maryland), which contains the files that reproduce results given in the text as well as additional material such as technical notes and movies.


Principles of Charged Particle Acceleration

Principles of Charged Particle Acceleration

Author: Stanley Humphries

Publisher: Courier Corporation

Published: 2013-09-11

Total Pages: 588

ISBN-13: 0486320634

DOWNLOAD EBOOK

This authoritative text offers a unified, programmed summary of the principles underlying all charged particle accelerators — it also doubles as a reference collection of equations and material essential to accelerator development and beam applications. The only text that covers linear induction accelerators, the work contains straightforward expositions of basic principles rather than detailed theories of specialized areas. 1986 edition.


The Physics of Particle Accelerators

The Physics of Particle Accelerators

Author: Klaus Wille (prof.)

Publisher: Clarendon Press

Published: 2000

Total Pages: 332

ISBN-13: 9780198505495

DOWNLOAD EBOOK

Starting from a historical overview of particle accelerator development and an emphasis on the importance of high energy particles in fundamental research, Wille (physics, U. of Dortmund) surveys many aspects of accelerator physics also relevant to other disciplines and develops relevant formulas step-by-step. Suitable for a senior undergraduate text. The translator is in the physics department at the U. of Bristol. First published in Germany in 1996. c. Book News Inc.


An Introduction to the Physics of Particle Accelerators

An Introduction to the Physics of Particle Accelerators

Author: Mario Conte

Publisher: World Scientific

Published: 2008

Total Pages: 391

ISBN-13: 9812779604

DOWNLOAD EBOOK

"This book provides a concise and coherent introduction to the physics of particle accelerators, with attention being paid to the design of an accelerator for use as an experimental tool. In the second edition, new chapters on spin dynamics of polarized beams as well as instrumentation and measurements are included, with a discussion of frequency spectra and Schottky signals. The additional material also covers quadratic Lie groups and integration highlighting new techniques using Cayley transforms, detailed estimation of collider luminosities, and new problems."--BOOK JACKET.