Commutative and Noncommutative Harmonic Analysis and Applications

Commutative and Noncommutative Harmonic Analysis and Applications

Author: Azita Mayeli

Publisher: American Mathematical Soc.

Published: 2013-11-08

Total Pages: 218

ISBN-13: 0821894935

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Wavelet and Frame Theoretic Methods in Harmonic Analysis and Partial Differential Equations, held September 22-23, 2012, at the Rochester Institute of Technology, Rochester, NY, USA. The book features new directions, results and ideas in commutative and noncommutative abstract harmonic analysis, operator theory and applications. The commutative part includes shift invariant spaces, abelian group action on Euclidean space and frame theory; the noncommutative part includes representation theory, continuous and discrete wavelets related to four dimensional Euclidean space, frames on symmetric spaces, $C DEGREES*$-algebras, projective multiresolutions, and free probability algebras. The scope of the book goes beyond traditional harmonic analysis, dealing with Fourier tools, transforms, Fourier bases, and associated function spaces. A number of papers take the step toward wavelet analysis, and even more general tools for analysis/synthesis problems, including papers on frames (over-complete bases) and their practical applications to engineering, cosmology and astrophysics.Other applications in this book include explicit families of wavelets and frames, as they are used in signal processing, multiplexing, and the study of Cosmic Microwave Background (CMB) radiation. For the purpose of organisation, the book is divided into three parts: noncommutative, commutative, and applications. The first group of papers are devoted to problems in noncommutative harmonic analysis, the second to topics in commutative harmonic analysis, and the third to such applications as wavelet and frame theory and to some real-world applications.


Wavelet Transforms

Wavelet Transforms

Author: Firdous A. Shah

Publisher: CRC Press

Published: 2022-11-28

Total Pages: 502

ISBN-13: 100077161X

DOWNLOAD EBOOK

Wavelet Transforms: Kith and Kin serves as an introduction to contemporary aspects of time-frequency analysis encompassing the theories of Fourier transforms, wavelet transforms and their respective offshoots. This book is the first of its kind totally devoted to the treatment of continuous signals and it systematically encompasses the theory of Fourier transforms, wavelet transforms, geometrical wavelet transforms and their ramifications. The authors intend to motivate and stimulate interest among mathematicians, computer scientists, engineers and physical, chemical and biological scientists. The text is written from the ground up with target readers being senior undergraduate and first-year graduate students and it can serve as a reference for professionals in mathematics, engineering and applied sciences. Features Flexibility in the book’s organization enables instructors to select chapters appropriate to courses of different lengths, emphasis and levels of difficulty Self-contained, the text provides an impetus to the contemporary developments in the signal processing aspects of wavelet theory at the forefront of research A large number of worked-out examples are included Every major concept is presented with explanations, limitations and subsequent developments, with emphasis on applications in science and engineering A wide range of exercises are incoporated in varying levels from elementary to challenging so readers may develop both manipulative skills in theory wavelets and deeper insight Answers and hints for selected exercises appear at the end The origin of the theory of wavelet transforms dates back to the 1980s as an outcome of the intriguing efforts of mathematicians, physicists and engineers. Owing to the lucid mathematical framework and versatile applicability, the theory of wavelet transforms is now a nucleus of shared aspirations and ideas.


From Fourier Analysis to Wavelets

From Fourier Analysis to Wavelets

Author: Jonas Gomes

Publisher: Springer

Published: 2015-09-15

Total Pages: 216

ISBN-13: 3319220756

DOWNLOAD EBOOK

This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints. Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform. The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets. Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis. Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.


Radon Transforms, Geometry, and Wavelets

Radon Transforms, Geometry, and Wavelets

Author: Gestur Ólafsson

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 282

ISBN-13: 0821843273

DOWNLOAD EBOOK

This volume is based on two special sessions held at the AMS Annual Meeting in New Orleans in January 2007, and a satellite workshop held in Baton Rouge on January 4-5, 2007. It consists of invited expositions that together represent a broad spectrum of fields, stressing surprising interactions and connections between areas that are normally thought of as disparate. The main topics are geometry and integral transforms. On the one side are harmonic analysis, symmetric spaces,representation theory (the groups include continuous and discrete, finite and infinite, compact and non-compact), operator theory, PDE, and mathematical probability. Moving in the applied direction we encounter wavelets, fractals, and engineering topics such as frames and signal and image processing.The subjects covered in this book form a unified whole, and they stand at the crossroads of pure and applied mathematics. The articles cover a broad range in harmonic analysis, with the main themes related to integral geometry, the Radon transform, wavelets and frame theory. These themes can loosely be grouped together as follows:Frame Theory and ApplicationsHarmonic Analysis and Function SpacesHarmonic Analysis and Number TheoryIntegral Geometry and Radon TransformsMultiresolution Analysis, Wavelets, and Applications


Excursions in Harmonic Analysis, Volume 1

Excursions in Harmonic Analysis, Volume 1

Author: Travis D Andrews

Publisher: Springer Science & Business Media

Published: 2013-01-04

Total Pages: 489

ISBN-13: 0817683763

DOWNLOAD EBOOK

The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.


Trends in Harmonic Analysis and Its Applications

Trends in Harmonic Analysis and Its Applications

Author: Jens G. Christensen

Publisher: American Mathematical Soc.

Published: 2015-10-27

Total Pages: 218

ISBN-13: 1470418797

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Its Applications held March 29-30, 2014, at the University of Maryland, Baltimore County, Baltimore, MD. It provides an in depth look at the many directions taken by experts in Harmonic Analysis and related areas. The papers cover topics such as frame theory, Gabor analysis, interpolation and Besov spaces on compact manifolds, Cuntz-Krieger algebras, reproducing kernel spaces, solenoids, hypergeometric shift operators and analysis on infinite dimensional groups. Expositions are by leading researchers in the field, both young and established. The papers consist of new results or new approaches to solutions, and at the same time provide an introduction into the respective subjects.


Principles of Harmonic Analysis

Principles of Harmonic Analysis

Author: Anton Deitmar

Publisher: Springer

Published: 2014-06-21

Total Pages: 330

ISBN-13: 3319057928

DOWNLOAD EBOOK

This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.