Intended as a second course on programming with data structures, this book is based on the notion of an abstract data type which is defined as an abstract mathematical model with a defined set of operations.
A unique, practical approach to working with collection classes in Java 2 Software developers new to Java will find the practical, software-engineering based approach taken by this book extremely refreshing. With an emphasis more on software design and less on theory, Java Collections explores in detail Java 2 collection classes, helping programmers choose the best collection classes for each application they work on. Watt and Brown explore abstract data types (ADTs) that turn up again and again in software design, using them to provide context for the data structures required for their implementation and the algorithms associated with the data structures. Numerous worked examples, several large case studies, and end-of-chapter exercises are also provided.
The design and analysis of efficient data structures has long been recognized as a key component of the Computer Science curriculum. Goodrich, Tomassia and Goldwasser's approach to this classic topic is based on the object-oriented paradigm as the framework of choice for the design of data structures. For each ADT presented in the text, the authors provide an associated Java interface. Concrete data structures realizing the ADTs are provided as Java classes implementing the interfaces. The Java code implementing fundamental data structures in this book is organized in a single Java package, net.datastructures. This package forms a coherent library of data structures and algorithms in Java specifically designed for educational purposes in a way that is complimentary with the Java Collections Framework.
Thes book has three key features : fundamental data structures and algorithms; algorithm analysis in terms of Big-O running time in introducied early and applied throught; pytohn is used to facilitates the success in using and mastering data strucutes and algorithms.
This practical text contains fairly "traditional" coverage of data structures with a clear and complete use of algorithm analysis, and some emphasis on file processing techniques as relevant to modern programmers. It fully integrates OO programming with these topics, as part of the detailed presentation of OO programming itself.Chapter topics include lists, stacks, and queues; binary and general trees; graphs; file processing and external sorting; searching; indexing; and limits to computation.For programmers who need a good reference on data structures.
Although traditional texts present isolated algorithms and data structures, they do not provide a unifying structure and offer little guidance on how to appropriately select among them. Furthermore, these texts furnish little, if any, source code and leave many of the more difficult aspects of the implementation as exercises. A fresh alternative to
This is an excellent, up-to-date and easy-to-use text on data structures and algorithms that is intended for undergraduates in computer science and information science. The thirteen chapters, written by an international group of experienced teachers, cover the fundamental concepts of algorithms and most of the important data structures as well as the concept of interface design. The book contains many examples and diagrams. Whenever appropriate, program codes are included to facilitate learning.This book is supported by an international group of authors who are experts on data structures and algorithms, through its website at www.cs.pitt.edu/~jung/GrowingBook/, so that both teachers and students can benefit from their expertise.
This textbook provides an in depth course on data structures in the context of object oriented development. Its main themes are abstraction, implementation, encapsulation, and measurement: that is, that the software process begins with abstraction of data types, which then lead to alternate representations and encapsulation, and finally to resource measurement. A clear object oriented approach, making use of Booch components, will provide readers with a useful library of data structure components and experience in software reuse. Students using this book are expected to have a reasonable understanding of the basic logical structures such as stacks and queues. Throughout, Ada 95 is used and the author takes full advantage of Ada's encapsulation features and the ability to present specifications without implementational details. Ada code is supported by two suites available over the World Wide Web.
Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++. Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.