This book provides a detailed analysis of absorption refrigeration systems, covering single effect to multi-effect systems and their applications. Both the first and second laws of thermodynamics are discussed in relation to refrigeration systems to show how system performance differs from one law to another. Comparative energy and exergy analyses and assessments of single effect, double effect, triple effect and quadruple effect absorption refrigeration system are performed to illustrate the impact of an increase in the number of effects on system performance. In particular, the second law (exergy) formulation for absorption refrigeration systems, rarely discussed by other works, is covered in detail. Integrated Absorption Refrigeration Systems will help researchers, students and instructors in the formulation of energy and exergy efficiency equations for absorption refrigeration systems.
This edited book looks at recent studies on interdisciplinary research related to exergy, energy, and the environment. This topic is of prime significance – there is a strong need for practical solutions through better design, analysis and assessment in order to achieve better efficiency, environment and sustainability. Exergetic, Energetic and Environmental Dimensions covers a number of topics ranging from thermodynamic optimization of energy systems, to the environmental impact assessment and clean energy, offering readers a comprehensive reference on analysis, modeling, development, experimental investigation, and improvement of many micro to macro systems and applications, ranging from basic to advanced categories. Its comprehensive content includes: - Comprehensive coverage of development of systems considering exergy, energy, and environmental issues, along with the most up-to-date information in the area, plus recent developments - New developments in the area of exergy, including recent debate involving the shaping of future directions and priorities for better environment, sustainable development and energy security - Provides a number of illustrative examples, practical applications, and case studies - Introduces recently developed technological and strategic solutions and engineering applications for professionals in the area - Provides numerous engineering examples and applications on exergy - Offers a variety of problems that foster critical thinking and skill development
Significantly revised and updated since its first publication in 1996, Absorption Chillers and Heat Pumps, Second Edition discusses the fundamental physics and major applications of absorption chillers. While the popularity of absorption chillers began to dwindle in the United States in the late 1990's, a shift towards sustainability, green buildin
The Multicolr Edition Has Been thoroughly revised and brought up-to-date.Multicolor pictures have been added to enhance the content value and to give the students and idea of what he will be dealing in relity,and to bridge the gap between theory and Practice.
Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications provides comprehensive coverage of this modern energy issue from both a scientific and technical level that is based on original research and the synthesis of consistent bibliographic material that meets the increasing need for modernization and greater energy efficiency to significantly reduce CO2 emissions. Ioan Sarbu and Calin Sebarchievici present a comprehensive overview of all major solar energy technologies, along with the fundamentals, experiments, and applications of solar heating and cooling systems. Technical, economic, and energy saving aspects related to design, modeling, and operation of these systems are also explored. This reference includes physical and mathematical concepts developed to make this publication a self-contained and up-to-date source of information for engineers, researchers, and professionals who are interested in the use of solar energy as an alternative energy source. - Includes learning aims, chapter summaries, problems and solutions to support the theories presented - Puts a specific emphasis on the practical application of the technologies in heating and cooling systems - Contains calculating equations for the energy and economic index of solar systems
Exergy, Second Edition deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. - Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications, and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems
The Air Conditioning Manual assists entry-level engineers in the design of air-conditioning systems. It is also usable - in conjunction with fundamental HVAC&R resource material - as a senior- or graduate-level text for a university course in HVAC system design. The manual was written to fill the void between theory and practice - to bridge the gap between real-world design practices and the theoretical calculations and analytical procedures or on the design of components. This second edition represents an update and revision of the manual. It now features the use of SI units throughout, updated references and the editing of many illustrations. * Helps engineers quickly come up with a design solution to a required air conditioning system. * Includes issues from comfort to cooling load calculations. * New sections on "Green HVAC" systems deal with hot topic of sustainable buildings.
The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.
Although conventional cogeneration systems have been used successfully in the last two decades, most of them have been large units using mainly hydrocarbon fuels that are becoming increasingly expensive. New cogeneration systems based on fuel cells and sorption air conditioning systems promise to be an energy-saving alternative for situations when cooling, heating and power are needed at low and medium capacities. Cogeneration Fuel Cell-Sorption Air Conditioning Systems examines the thermodynamic principles of fuel cell performance and sorption air conditioning systems, and gives relevant information about the state of the art of these technologies. It also provides the reader with the theoretical bases and knowledge needed to understand the operation of these new cogeneration systems, as well as discussing the design basis and economical evaluation. Topics covered include: • selected fuel cells for cogeneration CHP processes; • state-of-the-art sorption refrigeration systems; • potential applications in demonstration projects; and • profitability assessment of the cogeneration system. Air conditioning and fuel cell engineers; postgraduates and researchers in energy fields; and designers of cooling, heating and power cogeneration systems will find Cogeneration Fuel Cell-Sorption Air Conditioning Systems a useful and informative reference.
The original idea of IS is to send two solid-gas streams to impinge against each other at high velocity, enhancing transfer between phases. IS is classified into two kinds: Gas-continuous impinging streams (GIS) and Liquid-continuous ones (LIS). Impinging Streams describes fundamentals, major properties and application of IS, as a category of novel technologies in chemical engineering. Because of the universality of transfer phenomena, it is receiving widespread attention. This book represents the first book in this area for over 10 years and covers achievements and technologies.* describing clearly the properties of Gas-continuous and Liquid-continuous impinging streams* introducing new technical devices * includes a number of worked application cases, which are illustrated in detail