Direct and Inverse Problems in Wave Propagation and Applications

Direct and Inverse Problems in Wave Propagation and Applications

Author: Ivan Graham

Publisher: Walter de Gruyter

Published: 2013-10-14

Total Pages: 328

ISBN-13: 3110282283

DOWNLOAD EBOOK

This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.


Topics in Computational Wave Propagation

Topics in Computational Wave Propagation

Author: Mark Ainsworth

Publisher: Springer

Published: 2011-09-27

Total Pages: 410

ISBN-13: 9783642554841

DOWNLOAD EBOOK

These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.


Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Author: Steffen Marburg

Publisher: Springer Science & Business Media

Published: 2008-02-27

Total Pages: 584

ISBN-13: 3540774483

DOWNLOAD EBOOK

The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.


Wavelets

Wavelets

Author: John J. Benedetto

Publisher: CRC Press

Published: 2021-07-28

Total Pages: 586

ISBN-13: 1000443469

DOWNLOAD EBOOK

Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.


Parabolic Equation Methods for Electromagnetic Wave Propagation

Parabolic Equation Methods for Electromagnetic Wave Propagation

Author: Mireille Levy

Publisher: IET

Published: 2000

Total Pages: 360

ISBN-13: 9780852967645

DOWNLOAD EBOOK

Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR


Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Author: Gary Cohen

Publisher: Springer

Published: 2016-08-05

Total Pages: 393

ISBN-13: 9401777616

DOWNLOAD EBOOK

This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.


Finite Difference Computing with PDEs

Finite Difference Computing with PDEs

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2017-06-21

Total Pages: 522

ISBN-13: 3319554565

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.