Domain Decomposition Methods in Science and Engineering XXIII

Domain Decomposition Methods in Science and Engineering XXIII

Author: Chang-Ock Lee

Publisher: Springer

Published: 2017-03-15

Total Pages: 419

ISBN-13: 3319523899

DOWNLOAD EBOOK

This book is a collection of papers presented at the 23rd International Conference on Domain Decomposition Methods in Science and Engineering, held on Jeju Island, Korea on July 6-10, 2015. Domain decomposition methods solve boundary value problems by splitting them into smaller boundary value problems on subdomains and iterating to coordinate the solution between adjacent subdomains. Domain decomposition methods have considerable potential for a parallelization of the finite element methods, and serve a basis for distributed, parallel computations.


An Introduction to Domain Decomposition Methods

An Introduction to Domain Decomposition Methods

Author: Victorita Dolean

Publisher: SIAM

Published: 2015-12-08

Total Pages: 242

ISBN-13: 1611974062

DOWNLOAD EBOOK

The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.


Domain Decomposition Methods in Science and Engineering XIX

Domain Decomposition Methods in Science and Engineering XIX

Author: Yunqing Huang

Publisher: Springer Science & Business Media

Published: 2010-10-27

Total Pages: 484

ISBN-13: 3642113044

DOWNLOAD EBOOK

These are the proceedings of the 19th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linear or nonlinear systems of algebraic equations that arise in various problems in mathematics, computational science, engineering and industry. They are designed for massively parallel computers and take the memory hierarchy of such systems into account. This is essential for approaching peak floating point performance. There is an increasingly well-developed theory which is having a direct impact on the development and improvement of these algorithms.


Domain Decomposition Methods in Science and Engineering XVI

Domain Decomposition Methods in Science and Engineering XVI

Author: Olof Widlund

Publisher: Springer Science & Business Media

Published: 2007-07-30

Total Pages: 783

ISBN-13: 3540344691

DOWNLOAD EBOOK

Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.


Domain Decomposition Methods in Science and Engineering XX

Domain Decomposition Methods in Science and Engineering XX

Author: Randolph Bank

Publisher: Springer Science & Business Media

Published: 2013-07-03

Total Pages: 702

ISBN-13: 3642352758

DOWNLOAD EBOOK

These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.​


Modern Solvers for Helmholtz Problems

Modern Solvers for Helmholtz Problems

Author: Domenico Lahaye

Publisher: Birkhäuser

Published: 2017-03-02

Total Pages: 247

ISBN-13: 3319288326

DOWNLOAD EBOOK

This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.


Domain Decomposition Methods in Science and Engineering XXIV

Domain Decomposition Methods in Science and Engineering XXIV

Author: Petter E. Bjørstad

Publisher: Springer

Published: 2019-01-05

Total Pages: 556

ISBN-13: 3319938738

DOWNLOAD EBOOK

These are the proceedings of the 24th International Conference on Domain Decomposition Methods in Science and Engineering, which was held in Svalbard, Norway in February 2017. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2017.


Domain Decomposition Methods in Science and Engineering XXVI

Domain Decomposition Methods in Science and Engineering XXVI

Author: Susanne C. Brenner

Publisher: Springer Nature

Published: 2023-03-15

Total Pages: 778

ISBN-13: 3030950255

DOWNLOAD EBOOK

These are the proceedings of the 26th International Conference on Domain Decomposition Methods in Science and Engineering, which was hosted by the Chinese University of Hong Kong and held online in December 2020. Domain decomposition methods are iterative methods for solving the often very large systems of equations that arise when engineering problems are discretized, frequently using finite elements or other modern techniques. These methods are specifically designed to make effective use of massively parallel, high-performance computing systems. The book presents both theoretical and computational advances in this domain, reflecting the state of art in 2020.


Numerical Approximation of Hyperbolic Systems of Conservation Laws

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Author: Edwige Godlewski

Publisher: Springer Nature

Published: 2021-08-28

Total Pages: 846

ISBN-13: 1071613448

DOWNLOAD EBOOK

This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.