In order to more accurately situate and fit the neutrosophic logic into the framework of nonstandard analysis, we present the neutrosophic inequalities, neutrosophic equality, neutrosophic infimum and supremum, neutrosophic standard intervals, including the cases when the neutrosophic logic standard and nonstandard components T, I, F get values outside of the classical unit interval [0, 1], and a brief evolution of neutrosophic operators.
In order to more accurately situate and fit the neutrosophic logic into the framework of nonstandard analysis, we present the neutrosophic inequalities, neutrosophic equality, neutrosophic infimum and supremum, neutrosophic standard intervals, including the cases when the neutrosophic logic standard and nonstandard components T, I, F get values outside of the classical unit interval [0, 1], and a brief evolution of neutrosophic operators.
In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that NonStandard Neutrosophic Logic was never used by neutrosophic community in no application, that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never utilized since they were improved shortly after but he omits to tell their development, and that in real world applications we need to convert/approximate the NonStandard Analysis hyperreals, monads and binads to tiny intervals with the desired accuracy – otherwise they would be inapplicable. We point out several errors and false statements by Imamura [21] with respect to the inf/sup of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the same for his definition of nonstandard unit interval, and we prove that there is not a total order on the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are indeterminate), whence the Transfer Principle from R to R* is questionable. After his criticism, several response publications on theoretical nonstandard neutrosophics followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and unpierced binad - all these in order to close the newly extended nonstandard space (R*) under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations [23, 24]. Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together with NonStandard Neutrosophic Operators are presented.
The paper intends to answer Imamura’s criticism that we found benefic in better understanding the nonstandard neutrosophic logic – although the nonstandard neutrosophic logic was never used in practical applications.
We extend for the second time the nonstandard analysis by adding the left monad closed to the right, and right monad closed to the left, while besides the pierced binad (we introduced in 1998) we add now the unpierced binad—all these in order to close the newly extended nonstandard space under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations. Then, we extend the Nonstandard Neutrosophic Logic, Nonstandard Neutrosophic Set, and Nonstandard Probability on this Extended Nonstandard Analysis space, and we prove that it is a nonstandard neutrosophic lattice of first type (endowed with a nonstandard neutrosophic partial order) as well as a nonstandard neutrosophic lattice of second type (as algebraic structure, endowed with two binary neutrosophic laws: infN and supN). Many theorems, new terms introduced, better notations for monads and binads, and examples of nonstandard neutrosophic operations are given.
In this paper, we present the lattice structures of neutrosophic theories. We prove that Zhang-Zhang’s YinYang bipolar fuzzy set is a subclass of the Single-Valued bipolar neutrosophic set. Then we show that the pair structure is a particular case of refined neutrosophy, and the number of types of neutralities (sub-indeterminacies) may be any finite or infinite number.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.
In this book, we approach different topics related to neutrosophics, such as: Neutrosophic Set, Intuitionistic Fuzzy Set, Inconsistent Intuitionistic Fuzzy Set, Picture Fuzzy Set, Ternary Fuzzy Set, Pythagorean Fuzzy Set, Atanassov’s Intuitionistic Fuzzy Set of second type, Spherical Fuzzy Set, n-HyperSpherical Neutrosophic Set, q-Rung Orthopair Fuzzy Set, truth-membership, indeterminacy-membership, falsehood-nonmembership, Regret Theory, Grey System Theory, Three-Ways Decision, n-Ways Decision, Neutrosophy, Neutrosophication, Neutrosophic Probability, Refined Neutrosophy, Refined Neutrosophication, Nonstandard Analysis; Extended Nonstandard Analysis; Open and Closed Monads to the Left/Right; Pierced and Unpierced Binads; MoBiNad Set; infinitesimals; infinities; nonstandard reals; standard reals; Nonstandard Neutrosophic Lattices of First Type (as poset) and Second Type (as algebraic structure); Nonstandard Neutrosophic Logic; Extended Nonstandard Neutrosophic Logic; Nonstandard Arithmetic Operations; Nonstandard Unit Interval; Nonstandard Neutrosophic Infimum; and so on.
We now found nine new topologies, such as: NonStandard Topology, Largest Extended NonStandard Real Topology, Neutrosophic Triplet Weak/Strong Topologies, Neutrosophic Extended Triplet Weak/Strong Topologies, Neutrosophic Duplet Topology, Neutrosophic Extended Duplet Topology, Neutrosophic MultiSet Topology, and recall and improve the seven previously founded topologies in the years (2019-2023), namely: NonStandard Neutrosophic Topology, NeutroTopology, AntiTopology, Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, SuperHyperTopology, and Neutrosophic SuperHyperTopology. They are called avantgarde topologies because of their innovative forms.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.