A Very Applied First Course in Partial Differential Equations

A Very Applied First Course in Partial Differential Equations

Author: Michael K. Keane

Publisher:

Published: 2002

Total Pages: 536

ISBN-13:

DOWNLOAD EBOOK

This extremely readable book illustrates how mathematics applies directly to different fields of study. Focuses on problems that require physical to mathematical translations, by showing readers how equations have actual meaning in the real world. Covers fourier integrals, and transform methods, classical PDE problems, the Sturm-Liouville Eigenvalue problem, and much more. For readers interested in partial differential equations.


Applied Partial Differential Equations

Applied Partial Differential Equations

Author: J. David Logan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1468405330

DOWNLOAD EBOOK

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.


A First Course in Partial Differential Equations

A First Course in Partial Differential Equations

Author: H. F. Weinberger

Publisher: Courier Corporation

Published: 2012-04-20

Total Pages: 482

ISBN-13: 0486132048

DOWNLOAD EBOOK

Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.


Applied Partial Differential Equations

Applied Partial Differential Equations

Author: Paul DuChateau

Publisher: Courier Corporation

Published: 2012-10-30

Total Pages: 638

ISBN-13: 048614187X

DOWNLOAD EBOOK

Superb introduction devotes almost half its pages to numerical methods for solving partial differential equations, while the heart of the book focuses on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included, with solutions for many at end of book. For students with little background in linear algebra, a useful appendix covers that subject briefly.


A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

Published: 2009

Total Pages: 481

ISBN-13: 0521734908

DOWNLOAD EBOOK

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.


An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations

Author: Michael Renardy

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 447

ISBN-13: 0387216871

DOWNLOAD EBOOK

Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.


Applied Complex Analysis with Partial Differential Equations

Applied Complex Analysis with Partial Differential Equations

Author: Nakhlé H. Asmar

Publisher:

Published: 2002

Total Pages: 904

ISBN-13:

DOWNLOAD EBOOK

This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, complex series, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.


Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 263

ISBN-13: 3540887059

DOWNLOAD EBOOK

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Partial Differential Equations I

Partial Differential Equations I

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 673

ISBN-13: 144197055X

DOWNLOAD EBOOK

The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.