A Tour of Subriemannian Geometries, Their Geodesics and Applications

A Tour of Subriemannian Geometries, Their Geodesics and Applications

Author: Richard Montgomery

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 282

ISBN-13: 0821841653

DOWNLOAD EBOOK

Subriemannian geometries can be viewed as limits of Riemannian geometries. They arise naturally in many areas of pure (algebra, geometry, analysis) and applied (mechanics, control theory, mathematical physics) mathematics, as well as in applications (e.g., robotics). This book is devoted to the study of subriemannian geometries, their geodesics, and their applications. It starts with the simplest nontrivial example of a subriemannian geometry: the two-dimensional isoperimetric problem reformulated as a problem of finding subriemannian geodesics. Among topics discussed in other chapters of the first part of the book are an elementary exposition of Gromov's idea to use subriemannian geometry for proving a theorem in discrete group theory and Cartan's method of equivalence applied to the problem of understanding invariants of distributions. The second part of the book is devoted to applications of subriemannian geometry. In particular, the author describes in detail Berry's phase in quantum mechanics, the problem of a falling cat righting herself, that of a microorganism swimming, and a phase problem arising in the $N$-body problem. He shows that all these problems can be studied using the same underlying type of subriemannian geometry. The reader is assumed to have an introductory knowledge of differential geometry. This book that also has a chapter devoted to open problems can serve as a good introduction to this new, exciting area of mathematics.


An Introduction to the Geometry of Stochastic Flows

An Introduction to the Geometry of Stochastic Flows

Author: Fabrice Baudoin

Publisher: World Scientific

Published: 2004

Total Pages: 152

ISBN-13: 1860944817

DOWNLOAD EBOOK

This book aims to provide a self-contained introduction to the local geometry of the stochastic flows associated with stochastic differential equations. It stresses the view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry whose main tools are introduced throughout the text. By using the connection between stochastic flows and partial differential equations, we apply this point of view of the study of hypoelliptic operators written in Hormander's form.


An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem

Author: Luca Capogna

Publisher: Springer Science & Business Media

Published: 2007-08-08

Total Pages: 235

ISBN-13: 3764381337

DOWNLOAD EBOOK

This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.


Hodge Theory, Complex Geometry, and Representation Theory

Hodge Theory, Complex Geometry, and Representation Theory

Author: Robert S. Doran

Publisher: American Mathematical Soc.

Published: 2014

Total Pages: 330

ISBN-13: 0821894153

DOWNLOAD EBOOK

Contains carefully written expository and research articles. Expository papers include discussions of Noether-Lefschetz theory, algebraicity of Hodge loci, and the representation theory of SL2(R). Research articles concern the Hodge conjecture, Harish-Chandra modules, mirror symmetry, Hodge representations of Q-algebraic groups, and compactifications, distributions, and quotients of period domains.


Introduction to Geometric Control

Introduction to Geometric Control

Author: Yuri Sachkov

Publisher: Springer Nature

Published: 2022-07-02

Total Pages: 176

ISBN-13: 3031020707

DOWNLOAD EBOOK

This text is an enhanced, English version of the Russian edition, published in early 2021 and is appropriate for an introductory course in geometric control theory. The concise presentation provides an accessible treatment of the subject for advanced undergraduate and graduate students in theoretical and applied mathematics, as well as to experts in classic control theory for whom geometric methods may be introduced. Theory is accompanied by characteristic examples such as stopping a train, motion of mobile robot, Euler elasticae, Dido's problem, and rolling of the sphere on the plane. Quick foundations to some recent topics of interest like control on Lie groups and sub-Riemannian geometry are included. Prerequisites include only a basic knowledge of calculus, linear algebra, and ODEs; preliminary knowledge of control theory is not assumed. The applications problems-oriented approach discusses core subjects and encourages the reader to solve related challenges independently. Highly-motivated readers can acquire working knowledge of geometric control techniques and progress to studying control problems and more comprehensive books on their own. Selected sections provide exercises to assist in deeper understanding of the material. Controllability and optimal control problems are considered for nonlinear nonholonomic systems on smooth manifolds, in particular, on Lie groups. For the controllability problem, the following questions are considered: controllability of linear systems, local controllability of nonlinear systems, Nagano–Sussmann Orbit theorem, Rashevskii–Chow theorem, Krener's theorem. For the optimal control problem, Filippov's theorem is stated, invariant formulation of Pontryagin maximum principle on manifolds is given, second-order optimality conditions are discussed, and the sub-Riemannian problem is studied in detail. Pontryagin maximum principle is proved for sub-Riemannian problems, solution to the sub-Riemannian problems on the Heisenberg group, the group of motions of the plane, and the Engel group is described.


Foliations in Cauchy-Riemann Geometry

Foliations in Cauchy-Riemann Geometry

Author: Elisabetta Barletta

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 270

ISBN-13: 0821843044

DOWNLOAD EBOOK

The authors study the relationship between foliation theory and differential geometry and analysis on Cauchy-Riemann (CR) manifolds. The main objects of study are transversally and tangentially CR foliations, Levi foliations of CR manifolds, solutions of the Yang-Mills equations, tangentially Monge-Ampere foliations, the transverse Beltrami equations, and CR orbifolds. The novelty of the authors' approach consists in the overall use of the methods of foliation theory and choice of specific applications. Examples of such applications are Rea's holomorphic extension of Levi foliations, Stanton's holomorphic degeneracy, Boas and Straube's approximately commuting vector fields method for the study of global regularity of Neumann operators and Bergman projections in multi-dimensional complex analysis in several complex variables, as well as various applications to differential geometry. Many open problems proposed in the monograph may attract the mathematical community and lead to further applications of


The Geometry of Filtering

The Geometry of Filtering

Author: K. David Elworthy

Publisher: Springer Science & Business Media

Published: 2010-11-27

Total Pages: 179

ISBN-13: 303460176X

DOWNLOAD EBOOK

Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a Markovian framework with the resulting conditional law being that of a Markov process which is time inhomogeneous in general. This geometry is determined by the symbol of the operator on the state space which projects to a symbol on the observation space. The projectible symbol induces a (possibly non-linear and partially de ned) connection which lifts the observation process to the state space and gives a decomposition of the operator on the state space and of the noise. As is standard we can recover the classical ltering theory in which the observations are not usually Markovian by application of the Girsanov- Maruyama-Cameron-Martin Theorem. This structure we have is examined in relation to a number of geometrical topics.


Parabolic Geometries I

Parabolic Geometries I

Author: Andreas Čap

Publisher: American Mathematical Society

Published: 2024-07-29

Total Pages: 642

ISBN-13: 1470478226

DOWNLOAD EBOOK

Parabolic geometries encompass a very diverse class of geometric structures, including such important examples as conformal, projective, and almost quaternionic structures, hypersurface type CR-structures and various types of generic distributions. The characteristic feature of parabolic geometries is an equivalent description by a Cartan geometry modeled on a generalized flag manifold (the quotient of a semisimple Lie group by a parabolic subgroup). Background on differential geometry, with a view towards Cartan connections, and on semisimple Lie algebras and their representations, which play a crucial role in the theory, is collected in two introductory chapters. The main part discusses the equivalence between Cartan connections and underlying structures, including a complete proof of Kostant's version of the Bott–Borel–Weil theorem, which is used as an important tool. For many examples, the complete description of the geometry and its basic invariants is worked out in detail. The constructions of correspondence spaces and twistor spaces and analogs of the Fefferman construction are presented both in general and in several examples. The last chapter studies Weyl structures, which provide classes of distinguished connections as well as an equivalent description of the Cartan connection in terms of data associated to the underlying geometry. Several applications are discussed throughout the text.


Partial Differential Equations and Spectral Theory

Partial Differential Equations and Spectral Theory

Author: Michael Demuth

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 351

ISBN-13: 303480024X

DOWNLOAD EBOOK

This volume collects six articles on selected topics at the frontier between partial differential equations and spectral theory, written by leading specialists in their respective field. The articles focus on topics that are in the center of attention of current research, with original contributions from the authors. They are written in a clear expository style that makes them accessible to a broader audience. The articles contain a detailed introduction and discuss recent progress, provide additional motivation, and develop the necessary tools. Moreover, the authors share their views on future developments, hypotheses, and unsolved problems.


Around the Research of Vladimir Maz'ya I

Around the Research of Vladimir Maz'ya I

Author: Ari Laptev

Publisher: Springer Science & Business Media

Published: 2009-12-02

Total Pages: 414

ISBN-13: 1441913416

DOWNLOAD EBOOK

The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.