The theory of matroids connects disparate branches of combinatorial theory and algebra such as graph and lattice theory, combinatorial optimization, and linear algebra. This text describes standard examples and investigation results, and it uses elementary proofs to develop basic matroid properties before advancing to a more sophisticated treatment. 1976 edition.
This volume presents the refereed proceedings of the 10th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and the 11th International Workshop on Randomization and Computation. The papers cover design and analysis of approximation algorithms, hardness of approximation, small space and data streaming algorithms, sub-linear time algorithms, embeddings and metric space methods, and much more.
The LNCS series reports state-of-the-art results in computer science research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNCS has grown into the most comperhensive computer science research forum avaiable. The scope of LNCS, including its subseries LNAI and LNBI, spans the whole range of computer science and information technology including interdisciplinary topics in a variety of application fields. In parallel to the printed book, each new volume is published electronically in LNCS Online.
The papers in this volume were selected for presentation at the 15th Annual InternationalComputing and CombinatoricsConference (COCOON 2009), held during July 13-15, 2009 in Niagara Falls, New York, USA. Previous meetings of this conference were held in Xian (1995), Hong Kong (1996), Shanghai (1997), Taipei(1998), Tokyo(1999), Sydney(2000), Guilin(2001), Singapore(2002), Big Sky (2003), Jeju Island (2004), Kunming (2005), Taipei (2006), Alberta (2007), and Dalian (2008). In response to the Call for Papers, 125 extended abstracts (not counting withdrawn papers) were submitted from 28 countries and regions, of which 51 were accepted. Authors of the submitted papers were from Cyprus (1), The Netherlands (1), Bulgaria (1), Israel (1), Vietnam (2), Finland (1), Puerto Rico (2), Australia (4), Norway (4), Portugal (1) Spain (2), France (16), Republic of Korea(3), Singapore(2), Italy(6), Iran, (4), Greece(7), Poland(4), Switzerland (8), Hong Kong (10), UK (12), India (7), Taiwan (18), Canada (23), China (19), Japan (39), Germany (44), and the USA (77). The submitted papers were evaluated by an international Technical P- gram Committee (TPC) consisting of Srinivas Aluru (Iowa State University, USA), Lars Arge (University of Aarhus, Denmark), Vikraman Arvind (Ins- tute of Mathematical Sciences, India), James Aspnes (Yale University, USA), Mikhail Atallah (Purdue University, USA), Gill Barequet (Technion - Israel - stitute of Technology, Israel), Michael Brudno (University of Toronto, Canada), Jianer Chen (Texas A & M, USA), Bhaskar DasGupta (University of Illinois at Chicago, USA), Anupam Gupta (Carnegie Mellon University, USA), Lane A.
This book constitutes the thoroughly refereed post-workshop proceedings for the 26 International Workshop on combinatorial Algorithms, IWOCA 2015, held in Verona, Italy, in October 2015. The 29 revised full papers presented were carefully reviewed and selected from a total of 90 submissions. The topics of the papers include algorithms and data structures (including sequential, parallel, distributed, approximation, probabilistic, randomised, and on-line algorithms), algorithms on strings and graphs; applications (bioinformatics, music analysis, networking, and others); combinatorics on words; combinatorial enumeration; combinatorial optimization; complexity theory; computational biology; compression and information retrieval; cryptography and information security; decompositions and combinatorial designs; discrete and computational geometry; graph drawing and labeling; graph theory.
The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
This book constitutes the refereed proceedings of the 18th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2011, held in Gdańsk, Poland, in June 2011. The 24 revised full papers presented together with 1 survey lecture and 2 invited talks were carefully reviewed and selected from 57 submissions. The papers are organized in topical section on fault tolerance, routing, mobile agents, mobile robots, probabilistic methods, distributed algorithms on graphs, and ad-hoc networks.
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.
This book constitutes the thoroughly referred post-proceedings of the 21st International Workshop on Combinatorial Algorithms, IWOCA 2010, held in London, UK, in July 2010. The 31 revised full papers presented together with extended abstracts of 8 poster presentations were carefully reviewed and selected from a total of 85 submissions. A broad variety of combinatorial graph algorithms for the computations of various graph features are presented; also algorithms for network compuation, approximation, computational geometry, games, and search are presented and complexity aspects of such algorithms are discussed.