A Textbook of Physical Chemistry – Volume 1

A Textbook of Physical Chemistry – Volume 1

Author: Mandeep Dalal

Publisher: Dalal Institute

Published: 2018-01-01

Total Pages: 432

ISBN-13: 8193872010

DOWNLOAD EBOOK

An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.


Physical Chemistry Volume 1: Thermodynamics and Kinetics

Physical Chemistry Volume 1: Thermodynamics and Kinetics

Author: Peter Atkins

Publisher: W. H. Freeman

Published: 2010-02-26

Total Pages: 0

ISBN-13: 9781429231275

DOWNLOAD EBOOK

With its modern emphasis on the molecular view of physical chemistry, its wealth of contemporary applications, vivid full-color presentation, and dynamic new media tools, the thoroughly revised new edition is again the most modern, most effective full-length textbook available for the physical chemistry classroom. Volume 1 of Physical Chemistry, Ninth Edition, contains the new edition’s new Fundamentals chapters (Chapter 0), plus coverage of thermodynamics (Chapters 1-6) and kinetics (Chapters 20-23)


Atkins' Physical Chemistry 11e

Atkins' Physical Chemistry 11e

Author: Peter Atkins

Publisher:

Published: 2019-09-06

Total Pages: 471

ISBN-13: 0198823363

DOWNLOAD EBOOK

Atkins' Physical Chemistry: Molecular Thermodynamics and Kinetics is designed for use on the second semester of a quantum-first physical chemistry course. Based on the hugely popular Atkins' Physical Chemistry, this volume approaches molecular thermodynamics with the assumption that students will have studied quantum mechanics in their first semester. The exceptional quality of previous editions has been built upon to make this new edition of Atkins' Physical Chemistry even more closely suited to the needs of both lecturers and students. Re-organised into discrete 'topics', the text is more flexible to teach from and more readable for students. Now in its eleventh edition, the text has been enhanced with additional learning features and maths support to demonstrate the absolute centrality of mathematics to physical chemistry. Increasing the digestibility of the text in this new approach, the reader is brought to a question, then the math is used to show how it can be answered and progress made. The expanded and redistributed maths support also includes new 'Chemist's toolkits' which provide students with succinct reminders of mathematical concepts and techniques right where they need them. Checklists of key concepts at the end of each topic add to the extensive learning support provided throughout the book, to reinforce the main take-home messages in each section. The coupling of the broad coverage of the subject with a structure and use of pedagogy that is even more innovative will ensure Atkins' Physical Chemistry remains the textbook of choice for studying physical chemistry.


A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1

Author: Mandeep Dalal

Publisher: Dalal Institute

Published: 2017-01-01

Total Pages: 482

ISBN-13: 8193872002

DOWNLOAD EBOOK

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.


Liquid-State Physical Chemistry

Liquid-State Physical Chemistry

Author: Gijsbertus de With

Publisher: John Wiley & Sons

Published: 2013-07-15

Total Pages: 513

ISBN-13: 3527676775

DOWNLOAD EBOOK

For many processes and applications in science and technology a basic knowledge of liquids and solutions is a must. Gaining a better understanding of the behavior and properties of pure liquids and solutions will help to improve many processes and to advance research in many different areas. This book provides a comprehensive, self-contained and integrated survey of this topic and is a must-have for many chemists, chemical engineers and material scientists, ranging from newcomers in the field to more experienced researchers. The author offers a clear, well-structured didactic approach and provides an overview of the most important types of liquids and solutions. Special topics include chemical reactions, surfaces and phase transitions. Suitable both for introductory as well as intermediate level as more advanced parts are clearly marked. Includes also problems and solutions.


Physical Chemistry

Physical Chemistry

Author: Peter Atkins

Publisher: W. H. Freeman

Published: 2014-01-17

Total Pages: 0

ISBN-13: 9781429290197

DOWNLOAD EBOOK

Edition after edition, Atkins and de Paula's #1 bestseller remains the most contemporary, most effective full-length textbook for courses covering thermodynamics in the first semester and quantum mechanics in the second semester. Its molecular view of physical chemistry, contemporary applications, student friendly pedagogy, and strong problem-solving emphasis make it particularly well-suited for pre-meds, engineers, physics, and chemistry students. Now organized into briefer, more manageable topics, and featuring additional applications and mathematical guidance, the new edition helps students learn more effectively, while allowing instructors to teach the way they want. Available in Split Volumes For maximum flexibility in your physical chemistry course, this text is now offered as a traditional text or in two volumes: Volume 1: Thermodynamics and Kinetics: 1-4641-2451-5 Volume 2: Quantum Chemistry: 1-4641-2452-3


A Textbook of Organic Chemistry – Volume 1

A Textbook of Organic Chemistry – Volume 1

Author: Mandeep Dalal

Publisher: Dalal Institute

Published: 2019-01-01

Total Pages: 448

ISBN-13: 8195242731

DOWNLOAD EBOOK

An advanced-level textbook of organic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of the four-volume series, entitled “A Textbook of Organic Chemistry – Volume I, II, III, IV”. CONTENTS: CHAPTER 1. Nature of Bonding in Organic molecules: Delocalized Chemical Bonding; Conjugation; Cross Conjugation; Resonance; Hyperconjugation; Tautomerism; Aromaticity in Benzenoid and Nonbenzenoid Compounds; Alternant and Non-Alternant Hydrocarbons; Huckel’s Rule: Energy Level of p-Molecular Orbitals; Annulenes; Antiaromaticity; Homo-Aromaticity; PMO Approach; Bonds Weaker than Covalent; Addition Compounds: Crown Ether Complexes and Cryptands, Inclusion Compounds, Cyclodextrins; Catenanes and Rotaxanes CHAPTER 2. Stereochemistry: Chirality; Elements of symmetry; Molecules with more than one chiral centre: diastereomerism; Determination of relative and absolute configuration (octant rule excluded) with special reference to lactic acid, alanine & mandelic acid; Methods of resolution; Optical purity; Prochirality; Enantiotopic and diastereotopic atoms, groups and faces; Asymmetric synthesis: cram’s rule and its modifications, prelog’s rule; Conformational analysis of cycloalkanes (upto six membered rings); Decalins; Conformations of sugars; Optical activity in absence of chiral carbon (biphenyls, allenes and spiranes); Chirality due to helical shape; Geometrical isomerism in alkenes and oximes; Methods of determining the configuration CHAPTER 3. Reaction Mechanism: Structure and Reactivity: Types of mechanisms; Types of reactions; Thermodynamic and kinetic requirements; Kinetic and thermodynamic control; Hammond’s postulate; Curtin-Hammett principle; Potential energy diagrams: Transition states and intermediates; Methods of determining mechanisms; Isotope effects; Hard and soft acids and bases; Generation, structure, stability and reactivity of carbocations, carbanions, free radicals, carbenes and nitrenes; Effect of structure on reactivity; The Hammett equation and linear free energy relationship; Substituent and reaction constants; Taft equation CHAPTER 4. Carbohydrates: Types of naturally occurring sugars; Deoxy sugars; Amino sugars; Branch chain sugars; General methods of determination of structure and ring size of sugars with particular reference to maltose, lactose, sucrose, starch and cellulose. CHAPTER 5. Natural and Synthetic Dyes: Various classes of synthetic dyes including heterocyclic dyes; Interaction between dyes and fibers; Structure elucidation of indigo and Alizarin CHAPTER 6. Aliphatic Nucleophilic Substtitution: The SN2, SN1, mixed SN1 and SN2, SNi , SN1’, SN2’, SNi’ and SET mechanisms; The neighbouring group mechanisms; neighbouring group participation by p and s bonds; anchimeric assistance; Classical and nonclassical carbocations; Phenonium ions; Common carbocation rearrangements; Applications of NMR spectroscopy in the detection of carbocations; Reactivity- effects of substrate structure, attacking nucleophile, leaving group and reaction medium; Ambident nucleophiles and regioselectivity; Phase transfer catalysis. CHAPTER 7. Aliphatic Electrophilic Substitution: Bimolecular mechanisms – SE2 and SEi; The SE1 mechanism; Electrophilic substitution accompained by double bond shifts; Effect of substrates, leaving group and the solvent polarity on the reactivity CHAPTER 8. Aromatic Electrophilic Substitution: The arenium ion: mechanism, orientation and reactivity, energy profile diagrams; The ortho/para ratio, ipso attack, orientation in other ring systems; Quantitative treatment of reactivity in substrates and electrophiles; Diazonium coupling; Vilsmeir reaction; Gattermann-Koch reaction CHAPTER 9. Aromatic Nucleophilic Substitution: The ArSN1, ArSN2, Benzyne and SRN1 mechanisms; Reactivity – effect of substrate structure, leaving group and attacking nucleophile; The von Richter, Sommelet-Hauser, and Smiles rearrangements CHAPTER 10. Elimination Reactions: The E2, E1 and E1cB mechanisms; Orientation of the double bond; Reactivity –effects of substrate structures, attacking base, the leaving group and the medium; Mechanism and orientation in pyrolytic elimination CHAPTER 11. Addition to Carbon-Carbon Multiple Bonds: Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals; Regio–and chemoselectivity: orientation and reactivity; Addition to cyclopropane ring; Hydrogenation of double and triple bonds; Hydrogenation of aromatic rings; Hydroboration; Michael reaction; Sharpless asymmetric epoxidation. CHAPTER 12. Addition to Carbon-Hetero Multiple Bonds: Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acids, esters and nitriles; Addition of Grignard reagents, organozinc and organolithium; Reagents to carbonyl and unsaturated carbonyl compounds; Wittig reaction; Mechanism of condensation reactions involving enolates – Aldol, Knoevenagel, Claisen, Mannich, Benzoin, Perkin and Stobbe reactions; Hydrolysis of esters and amides; Ammonolysis of esters.