Mine Ventilation

Mine Ventilation

Author: Purushotham Tukkaraja

Publisher: CRC Press

Published: 2021-06-29

Total Pages: 580

ISBN-13: 1000464253

DOWNLOAD EBOOK

This volume contains the proceedings of the 18th North American Mine Ventilation Symposium held, on a virtual platform, June 12-17, 2021. This symposium was organized by South Dakota Mines, Rapid City, South Dakota, in collaboration with the Underground Ventilation Committee (UVC) of the Society for Mining, Metallurgy & Exploration (SME). The Mine Ventilation Symposium series has always been a premier forum for ventilation experts, practitioners, educators, students, regulators, and manufacturers from around the world to exchange knowledge, ideas, and opinions. This volume features fifty-seven selected technical papers in a wide range of topics including: auxiliary ventilation, case studies of mine ventilation, computational fluid dynamics applications in mine ventilation, diesel particulate control, electric machinery in mine ventilation, mine cooling and refrigeration, mine dust monitoring and control, mine fans, mine fires and explosion prevention, mine gases, mine heat, mine management and organization of ventilation, mine ventilation and automation, occupational health and safety in mine ventilation, renewable/alternative energy in mine ventilation, ventilation monitoring and measurement, ventilation network analysis and optimization, and ventilation planning and design.


Scaling, Self-similarity, and Intermediate Asymptotics

Scaling, Self-similarity, and Intermediate Asymptotics

Author: G. I. Barenblatt

Publisher: Cambridge University Press

Published: 1996-12-12

Total Pages: 412

ISBN-13: 9780521435222

DOWNLOAD EBOOK

Scaling laws reveal the fundamental property of phenomena, namely self-similarity - repeating in time and/or space - which substantially simplifies the mathematical modelling of the phenomena themselves. This book begins from a non-traditional exposition of dimensional analysis, physical similarity theory, and general theory of scaling phenomena, using classical examples to demonstrate that the onset of scaling is not until the influence of initial and/or boundary conditions has disappeared but when the system is still far from equilibrium. Numerous examples from a diverse range of fields, including theoretical biology, fracture mechanics, atmospheric and oceanic phenomena, and flame propagation, are presented for which the ideas of scaling, intermediate asymptotics, self-similarity, and renormalisation were of decisive value in modelling.


Fire Modelling

Fire Modelling

Author: G. Cox

Publisher:

Published: 2004

Total Pages: 8

ISBN-13: 9781860817281

DOWNLOAD EBOOK

This Digest explains the methodologies being used for the computer simulation of fire. It focuses on models of the fire itself: the essentially gas phase phenomenon at the heart of any fire simulation. Numerical modelling has become increasingly attractive for those wishing to fully exploit the freedoms to achieve safe, cost effective design offered by performance based regulation. This new edition of Digest 367 supersedes the version published in 1991. It explains fire growth and spread, and the two basic types of computer simulation methodologies. These are the zonal models, and the more universal field models that use the specialist discipline of computational fluid dynamics. Two types of field model are described which employ alternative approaches using Reynolds Averaged and Large Eddy methodologies to capture the influences of turbulence. An example shows the BRE CRISP model applied to the problem of smoke spread through a two storey theatre and the evacuation of the occupants.


Fire Following Earthquake

Fire Following Earthquake

Author: Charles Scawthorn

Publisher: ASCE Publications

Published: 2005-01-01

Total Pages: 362

ISBN-13: 9780784475515

DOWNLOAD EBOOK

Prepared by the Technical Council on Lifeline Earthquake Engineering of ASCE. This TCLEE Monograph covers the entire range of fire following earthquake (FFE) issues, from historical fires to 20th-century fires in Kobe, San Francisco, Oakland, Berkeley, and Northridge. FFE has the potential of causing catastrophic losses in the United States, Japan, Canada, New Zealand, and other seismically active countries with wood houses. This comprehensive book on FFE and urban conflagrations provides state-of-the-practice insight on unique issues, such as large diameter flex hose applications by fire and water departments. Topics include: History of past fires; Computer modeling of fire spread in the post-earthquake urban environment; Concurrent damage and fire impacts for water, power gas, communication and transportation systems; Examples of reliable water systems built or designed in San Francisco, Vancouver, Berkeley, and Kyoto; Use of large diameter (5 in.) and ultralarge diameter (12 in.) flex hose for fire fighting and water restoration; and Cost-effectiveness of various FFE mitigation strategies, with a detailed benefit-cost model. Water utility engineers, fire fighting professionals, and emergency response planners will benefit from reading this book.


Transport Phenomena in Multiphase Systems

Transport Phenomena in Multiphase Systems

Author: Amir Faghri

Publisher: Academic Press

Published: 2006

Total Pages: 1072

ISBN-13:

DOWNLOAD EBOOK

Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors


Commodity Classification

Commodity Classification

Author: Henry Persson

Publisher:

Published: 1994

Total Pages: 57

ISBN-13:

DOWNLOAD EBOOK

"A correct commodity classification is one of the most important factors in order to design an efficient and reliable sprinkler system. In this project, commodity classification tests have been conducted using a test method developed by Factory Mutual Research Corporation (FMRC). 18 tests with different types of commodities have been tested and the indicated classification achieved has ben compared to existing classification. The classification and required level of protection stated in the Swedish sprinkler standards has also been compared to corresponding FMRC and NFPA standards ... The general conclusion from the tests, is that the FMRC classification test method will have a very great potential to form the basis for an international accepted procedure for commodity classification. The method is able to provide a better and more reliable classification which of course will also lead to a more reliable sprinkler protection ..."--Abstract.


Fundamentals of Fire Phenomena

Fundamentals of Fire Phenomena

Author: James G. Quintiere

Publisher: John Wiley & Sons

Published: 2006-04-21

Total Pages: 476

ISBN-13:

DOWNLOAD EBOOK

Understanding fire dynamics and combustion is essential in fire safety engineering and in fire science curricula. Engineers and students involved in fire protection, safety and investigation need to know and predict how fire behaves to be able to implement adequate safety measures and hazard analyses. Fire phenomena encompass everything about the scientific principles behind fire behavior. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear discipline: Covers thermochemistry including mixtures and chemical reactions; Introduces combustion to the fire protection student; Discusses premixed flames and spontaneous ignition; Presents conservation laws for control volumes, including the effects of fire; Describes the theoretical bases for empirical aspects of the subject of fire; Analyses ignition of liquids and the importance of evaporation including heat and mass transfer; Features the stages of fire in compartments, and the role of scale modeling in fire. Fundamentals of Fire Phenomena is an invaluable reference tool for practising engineers in any aspect of safety or forensic analysis. Fire safety officers, safety practitioners and safety consultants will also find it an excellent resource. In addition, this is a must-have book for senior engineering students and postgraduates studying fire protection and fire aspects of combustion.