DC-DC Converter Topologies

DC-DC Converter Topologies

Author: Gerry Moschopoulos

Publisher: John Wiley & Sons

Published: 2024-01-31

Total Pages: 468

ISBN-13: 111961242X

DOWNLOAD EBOOK

A comprehensive look at DC-DC converters and advanced power converter topologies for all skills levels As it can be rare for source voltage to meet the requirements of a Direct Current (DC) load, DC-DC converters are essential to access service. DC-DC power converters employ power semiconductor devices (like MOSFETs and IGBTs) as switches and passive elements such as capacitors, inductors, and transformers to alter the voltage provided by a DC source into the necessary DC voltage as is required by a DC load. This source can be a battery, solar panels, fuel cells, or a DC bus voltage fed by rectified AC utility voltage. As the many components of DC-DC converters can be differently arranged into circuit structures called topologies, there are as many possible circuit topologies as there are possible combinations of circuit elements. Focusing on DC-DC switch-mode power converters ranging from 50 W to 10kW, DC-DC Converter Topologies provides a survey of all converter topology types within this power range. General principles are described for each topology type using a representative converter as an example. Variations that can be found that differ from the example are then examined, with a helpful discussion of comparisons when relevant. A broad range of topics is covered within the book, from simple, low-power converters to complex, high-power converters and everywhere in between. DC-DC Converter Topologies readers will also find: A detailed discussion of four key DC-DC converter topologies Description of isolated two-switch pulse-width modulated (PWM) topologies including push-pull, half-bridge, and interleaved converters An exploration of high-gain converters such as coupled inductors, voltage multipliers, and switched capacitor converters This book provides the tools so that a non-expert will be equipped to deal with the vast array of DC-DC converters that presently exist. As such, DC-DC Converter Topologies is a useful reference for electrical engineers, professors, and graduate students studying in the field.


Energy Efficiency of Modern Power and Energy Systems

Energy Efficiency of Modern Power and Energy Systems

Author: Shady H E Abdel Aleem

Publisher: Elsevier

Published: 2024-08-15

Total Pages: 544

ISBN-13: 0443216452

DOWNLOAD EBOOK

Energy Efficiency and Management of Power and Energy Systems introduces students and researchers to a broad range of power system management challenges, technologies, and solutions. This book begins with an analysis of system technology's current state, the most pressing problems, and the background to challenges in integrating renewable energy sources. Technologies including smart grids, green building, and worker requirements are covered. Subsequent chapters break down potential management solutions, including specific problem-solving for solar, wind, and hybrid systems. Finally, specific case studies from a global geographical range zero in on critical questions facing the present industry. Providing meticulously researched literature reviews for guiding deeper reading, Energy Efficiency and Management of Power and Energy Systems leads readers from contextual understanding to specific case studies and solutions for sustainable power systems. - Addresses the challenges and solutions related to integrating renewable energy sources into the power grid, focusing on maintaining power quality and enhancing energy efficiency - Provides a comprehensive reference with extensive guidance on deeper reading - Develops understanding and solution design using case studies from a global range of geographies with differing power needs and resources - Guides readers through evaluation and analysis of the capabilities and limitations of a range of modern technologies


DC—DC Converters for Future Renewable Energy Systems

DC—DC Converters for Future Renewable Energy Systems

Author: Neeraj Priyadarshi

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 480

ISBN-13: 9811643881

DOWNLOAD EBOOK

The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.


Fundamentals of Power Electronics

Fundamentals of Power Electronics

Author: Robert W. Erickson

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 882

ISBN-13: 0306480484

DOWNLOAD EBOOK

Fundamentals of Power Electronics, Second Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material. Improved features of this new edition include: A new chapter on input filters, showing how to design single and multiple section filters; Major revisions of material on averaged switch modeling, low-harmonic rectifiers, and the chapter on AC modeling of the discontinuous conduction mode; New material on soft switching, active-clamp snubbers, zero-voltage transition full-bridge converter, and auxiliary resonant commutated pole. Also, new sections on design of multiple-winding magnetic and resonant inverter design; Additional appendices on Computer Simulation of Converters using averaged switch modeling, and Middlebrook's Extra Element Theorem, including four tutorial examples; and Expanded treatment of current programmed control with complete results for basic converters, and much more. This edition includes many new examples, illustrations, and exercises to guide students and professionals through the intricacies of power electronics design. Fundamentals of Power Electronics, Second Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analogue and digital electronics.


Control and Nonlinear Dynamics on Energy Conversion Systems

Control and Nonlinear Dynamics on Energy Conversion Systems

Author: Herbert Ho-Ching Iu

Publisher: MDPI

Published: 2019-07-01

Total Pages: 435

ISBN-13: 3039211102

DOWNLOAD EBOOK

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.


Vehicle Propulsion Systems

Vehicle Propulsion Systems

Author: Lino Guzzella

Publisher: Springer Science & Business Media

Published: 2007-09-21

Total Pages: 345

ISBN-13: 3540746927

DOWNLOAD EBOOK

The authors of this text have written a comprehensive introduction to the modeling and optimization problems encountered when designing new propulsion systems for passenger cars. It is intended for persons interested in the analysis and optimization of vehicle propulsion systems. Its focus is on the control-oriented mathematical description of the physical processes and on the model-based optimization of the system structure and of the supervisory control algorithms.


High-Frequency Magnetic Components

High-Frequency Magnetic Components

Author: Marian K. Kazimierczuk

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 510

ISBN-13: 1119964911

DOWNLOAD EBOOK

If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.


High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain

High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain

Author: Deshang Sha

Publisher: Springer

Published: 2018-05-17

Total Pages: 326

ISBN-13: 9811302596

DOWNLOAD EBOOK

Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters.


Handbook of Automotive Power Electronics and Motor Drives

Handbook of Automotive Power Electronics and Motor Drives

Author: Ali Emadi

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 909

ISBN-13: 135183679X

DOWNLOAD EBOOK

Initially, the only electric loads encountered in an automobile were for lighting and the starter motor. Today, demands on performance, safety, emissions, comfort, convenience, entertainment, and communications have seen the working-in of seemingly innumerable advanced electronic devices. Consequently, vehicle electric systems require larger capacities and more complex configurations to deal with these demands. Covering applications in conventional, hybrid-electric, and electric vehicles, the Handbook of Automotive Power Electronics and Motor Drives provides a comprehensive reference for automotive electrical systems. This authoritative handbook features contributions from an outstanding international panel of experts from industry and academia, highlighting existing and emerging technologies. Divided into five parts, the Handbook of Automotive Power Electronics and Motor Drives offers an overview of automotive power systems, discusses semiconductor devices, sensors, and other components, explains different power electronic converters, examines electric machines and associated drives, and details various advanced electrical loads as well as battery technology for automobile applications. As we seek to answer the call for safer, more efficient, and lower-emission vehicles from regulators and consumer insistence on better performance, comfort, and entertainment, the technologies outlined in this book are vital for engineering advanced vehicles that will satisfy these criteria.