A Study of Iterative Methods Image Reconstruction and Applications

A Study of Iterative Methods Image Reconstruction and Applications

Author: Federico Benvenuto

Publisher:

Published: 2010

Total Pages: 136

ISBN-13:

DOWNLOAD EBOOK

In this thesis, we investigate a set of algorithms for image reconstruction (IR). In chapter 3, we study the existence of the ML solutions in the IR problem corrupted by a mixture of Gaussian and Poisson noise. We give the conditions for existence of the solution of the ML problem. Moreover, we show that the expected value of the IR error of the Landweber algorithm with respect to the noise statistics and to a particular class of eigenvalue distributions (which approximate the real distribution of the eigenvalues of an imaging system) is really semi-convergent with respect to the "true" solution. In chapter 4 we give an approximation of the standard algorithm for Maximum Likelihood IR in the case of a mixture of Gaussian and Poisson noise. In chapter 5, we have applied SGP method for IR in the case of an ill-conditioned problem with data affected by Gaussian noise. We have performed several numerical simulations verifying the efficiency of the SGP method. We have also compared SGP with respect to the classical known algorithms. In chapter 7, we propose a semi-blind deconvolution suitable for the specific case in study, in which the impulse response function depends on one parameter. Simulation results show that this method efficiently estimates the parameter. In chapter 7, we propose a myopic deconvolution for astronomical IR useful when the PSF is measured as well as the date. Hence only a noisy PSF is available. This method, starting from the joint probability between the two random variables, the data and the measured PSF, lead to the minimization of a separately convex functional. A comparison with classical methods is done. The efficiency of myopic method is shown.


Image Reconstruction

Image Reconstruction

Author: Gengsheng Lawrence Zeng

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2017-03-20

Total Pages: 240

ISBN-13: 3110500590

DOWNLOAD EBOOK

This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing


Medical Image Reconstruction

Medical Image Reconstruction

Author: Gengsheng Lawrence Zeng

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-07-04

Total Pages: 392

ISBN-13: 3111055701

DOWNLOAD EBOOK

This textbook introduces the essential concepts of tomography in the field of medical imaging. The medical imaging modalities include x-ray CT (computed tomography), PET (positron emission tomography), SPECT (single photon emission tomography) and MRI. In these modalities, the measurements are not in the image domain and the conversion from the measurements to the images is referred to as the image reconstruction. The work covers various image reconstruction methods, ranging from the classic analytical inversion methods to the optimization-based iterative image reconstruction methods. As machine learning methods have lately exhibited astonishing potentials in various areas including medical imaging the author devotes one chapter to applications of machine learning in image reconstruction. Based on college level in mathematics, physics, and engineering the textbook supports students in understanding the concepts. It is an essential reference for graduate students and engineers with electrical engineering and biomedical background due to its didactical structure and the balanced combination of methodologies and applications,


Iterative-Interpolation Super-Resolution Image Reconstruction

Iterative-Interpolation Super-Resolution Image Reconstruction

Author: Vivek Bannore

Publisher: Springer Science & Business Media

Published: 2009-04-08

Total Pages: 121

ISBN-13: 3642003842

DOWNLOAD EBOOK

To my wife, Mitu - Vivek Bannore Preface Preface In many imaging systems, under-sampling and aliasing occurs frequently leading to degradation of image quality. Due to the limited number of sensors available on the digital cameras, the quality of images captured is also limited. Factors such as optical or atmospheric blur and sensor noise can also contribute further to the d- radation of image quality. Super-Resolution is an image reconstruction technique that enhances a sequence of low-resolution images or video frames by increasing the spatial resolution of the images. Each of these low-resolution images contain only incomplete scene information and are geometrically warped, aliased, and - der-sampled. Super-resolution technique intelligently fuses the incomplete scene information from several consecutive low-resolution frames to reconstruct a hi- resolution representation of the original scene. In the last decade, with the advent of new technologies in both civil and mi- tary domain, more computer vision applications are being developed with a demand for high-quality high-resolution images. In fact, the demand for high- resolution images is exponentially increasing and the camera manufacturing te- nology is unable to cope up due to cost efficiency and other practical reasons.


Medical Image Reconstruction

Medical Image Reconstruction

Author: Gengsheng Zeng

Publisher: Springer Science & Business Media

Published: 2010-12-28

Total Pages: 204

ISBN-13: 3642053688

DOWNLOAD EBOOK

"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.


Iterative-Interpolation Super-Resolution Image Reconstruction

Iterative-Interpolation Super-Resolution Image Reconstruction

Author: Vivek Bannore

Publisher: Springer

Published: 2009-03-21

Total Pages: 121

ISBN-13: 3642003850

DOWNLOAD EBOOK

To my wife, Mitu - Vivek Bannore Preface Preface In many imaging systems, under-sampling and aliasing occurs frequently leading to degradation of image quality. Due to the limited number of sensors available on the digital cameras, the quality of images captured is also limited. Factors such as optical or atmospheric blur and sensor noise can also contribute further to the d- radation of image quality. Super-Resolution is an image reconstruction technique that enhances a sequence of low-resolution images or video frames by increasing the spatial resolution of the images. Each of these low-resolution images contain only incomplete scene information and are geometrically warped, aliased, and - der-sampled. Super-resolution technique intelligently fuses the incomplete scene information from several consecutive low-resolution frames to reconstruct a hi- resolution representation of the original scene. In the last decade, with the advent of new technologies in both civil and mi- tary domain, more computer vision applications are being developed with a demand for high-quality high-resolution images. In fact, the demand for high- resolution images is exponentially increasing and the camera manufacturing te- nology is unable to cope up due to cost efficiency and other practical reasons.


A Contemporary Study of Iterative Methods

A Contemporary Study of Iterative Methods

Author: A. Alberto Magrenan

Publisher: Academic Press

Published: 2018-02-13

Total Pages: 402

ISBN-13: 0128094931

DOWNLOAD EBOOK

A Contemporary Study of Iterative Methods: Convergence, Dynamics and Applications evaluates and compares advances in iterative techniques, also discussing their numerous applications in applied mathematics, engineering, mathematical economics, mathematical biology and other applied sciences. It uses the popular iteration technique in generating the approximate solutions of complex nonlinear equations that is suitable for aiding in the solution of advanced problems in engineering, mathematical economics, mathematical biology and other applied sciences. Iteration methods are also applied for solving optimization problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand. Contains recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces Encompasses the novel tool of dynamic analysis for iterative methods, including new developments in Smale stability theory and polynomiography Explores the uses of computation of iterative methods across non-linear analysis Uniquely places discussion of derivative-free methods in context of other discoveries, aiding comparison and contrast between options


Magnetic Resonance Image Reconstruction

Magnetic Resonance Image Reconstruction

Author: Mehmet Akcakaya

Publisher: Academic Press

Published: 2022-11-04

Total Pages: 518

ISBN-13: 012822746X

DOWNLOAD EBOOK

Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. Explains the underlying principles of MRI reconstruction, along with the latest research“/li> Gives example codes for some of the methods presented Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction


Quantitative Analysis in Nuclear Medicine Imaging

Quantitative Analysis in Nuclear Medicine Imaging

Author: Habib Zaidi

Publisher: Springer Science & Business Media

Published: 2006-07-11

Total Pages: 593

ISBN-13: 0387254447

DOWNLOAD EBOOK

This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable sophistication of nuclear medicine instrumentation and - crease in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of nuclear imaging for diagnosis and therapy has origins dating back almost to the pioneering work of Dr G. de Hevesy, quantitative imaging has only recently emerged as a promising approach for diagnosis and therapy of many diseases. An effort has, therefore, been made to place the reviews provided in this book in a broader context. The effort to do this is reflected by the inclusion of introductory chapters that address basic principles of nuclear medicine instrumentation and dual-modality imaging, followed by overview of issues that are closely related to quantitative nuclear imaging and its potential role in diagnostic and therapeutic applications. A brief overview of each chapter is provided below. Chapter 1 presents a general overview of nuclear medicine imaging physics and instrumentation including planar scintigraphy, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Nowadays, patients’ diagnosis and therapy is rarely done without the use of imaging technology. As such, imaging considerations are incorporated in almost every chapter of the book. The development of dual-modality - aging systems is an emerging research field, which is addressed in chapter 2.