Contents of this Doctoral Dissertation include: Understanding the linear stability characteristics of BWRs, Experiments on the stability of the Desire facility, Applications of the reducer-order model, Numerical analysis of the nonlinear dynamics of BWRs, Experiments on the nonlinear dynamics of natural-circulation two-phase flows, Experiments on the neutronic-thermalhydraulic stability, Conclusions and Discussion
Linear and Non-Linear Stability Analysis in Boiling Water Reactors: The Design of Real-Time Stability Monitors presents a thorough analysis of the most innovative BWR reactors and stability phenomena in one accessible resource. The book presents a summary of existing literature on BWRs to give early career engineers and researchers a solid background in the field, as well as the latest research on stability phenomena (propagation phenomena in BWRs), nuclear power monitors, and advanced computer systems used to for the prediction of stability. It also emphasizes the importance of BWR technology and embedded neutron monitoring systems (APRMs and LPRMs), and introduces non-linear stability parameters that can be used for the onset detection of instabilities in BWRs. Additionally, the book details the scope, advantages, and disadvantages of multiple advanced linear and non linear signal processing methods, and includes analytical case studies of existing plants. This combination makes Linear and Non-Linear Stability Analysis in Boiling Water Reactors a valuable resource for nuclear engineering students focusing on linear and non-linear analysis, as well as for those working and researching in a nuclear power capacity looking to implement stability methods and estimate decay ratios using non-linear techniques. - Explores the nuclear stability of Boiling Water Reactors based on linear and non-linear models - Evaluates linear signal processing methods such as autoregressive models, Fourier-based methods, and wavelets to calculate decay ratios - Proposes novel non-linear signal analysis techniques linked to non-linear stability indicators - Includes case studies of various existing nuclear power plants as well as mathematical models and simulations
This edition of the classic monograph gives a comprehensive overview of the thermal-hydraulic technology underlying the design, operation, and safety assessment of boiling water reactors. In addition, new material on pressure suppression containment technology is presented.
In the design of novel nuclear reactors active systems are replaced by passive ones in order to reduce the risk of failure. For that reason natural circulation is being considered as the primary cooling mechanism in next generation nuclear reactor designs such as the natural circulation boiling water reactor (BWR). In such a reactor, however, the flow is not a controlled parameter but is dependent on the power. As a result, the dynamical behavior significantly differs from that in conventional forced circulation BWRs. For that reason, predicting the stability characteristics of these reactors has to be carefully studied. In this work, a number of open issues are investigated regarding the stability of natural circulation BWRs (e.g. margins to instabilities at rated conditions, interaction between the thermal-hydraulics and the neutronics, and the occurrence of flashing induced instabilities) with a strong emphasis on experimental evidence.