A Student's Guide to Python for Physical Modeling

A Student's Guide to Python for Physical Modeling

Author: Jesse M. Kinder

Publisher: Princeton University Press

Published: 2021-08-03

Total Pages: 241

ISBN-13: 0691223661

DOWNLOAD EBOOK

A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that has gained popularity throughout the sciences. This fully updated second edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This guide introduces a wide range of useful tools, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Animation Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. This guide also includes supplemental online resources: code samples, data sets, tutorials, and more. This edition includes new material on symbolic calculations with SymPy, an introduction to Python libraries for data science and machine learning (pandas and sklearn), and a primer on Python classes and object-oriented programming. A new appendix also introduces command line tools and version control with Git.


Physical Models of Living Systems

Physical Models of Living Systems

Author: Philip Nelson

Publisher: Macmillan Higher Education

Published: 2014-12-20

Total Pages: 365

ISBN-13: 1319036902

DOWNLOAD EBOOK

Written for intermediate-level undergraduates pursuing any science or engineering major, Physical Models of Living Systems helps students develop many of the competencies that form the basis of the new MCAT2015. The only prerequisite is first-year physics. With the more advanced "Track-2" sections at the end of each chapter, the book can be used in graduate-level courses as well.


Modeling and Simulation in Python

Modeling and Simulation in Python

Author: Allen B. Downey

Publisher: No Starch Press

Published: 2023-05-30

Total Pages: 277

ISBN-13: 1718502176

DOWNLOAD EBOOK

Modeling and Simulation in Python teaches readers how to analyze real-world scenarios using the Python programming language, requiring no more than a background in high school math. Modeling and Simulation in Python is a thorough but easy-to-follow introduction to physical modeling—that is, the art of describing and simulating real-world systems. Readers are guided through modeling things like world population growth, infectious disease, bungee jumping, baseball flight trajectories, celestial mechanics, and more while simultaneously developing a strong understanding of fundamental programming concepts like loops, vectors, and functions. Clear and concise, with a focus on learning by doing, the author spares the reader abstract, theoretical complexities and gets right to hands-on examples that show how to produce useful models and simulations.


Computational Modeling and Visualization of Physical Systems with Python

Computational Modeling and Visualization of Physical Systems with Python

Author: Jay Wang

Publisher: John Wiley & Sons

Published: 2015-12-21

Total Pages: 494

ISBN-13: 1119239885

DOWNLOAD EBOOK

Computational Modeling, by Jay Wang introduces computational modeling and visualization of physical systems that are commonly found in physics and related areas. The authors begin with a framework that integrates model building, algorithm development, and data visualization for problem solving via scientific computing. Through carefully selected problems, methods, and projects, the reader is guided to learning and discovery by actively doing rather than just knowing physics.


Python Scripting for Computational Science

Python Scripting for Computational Science

Author: Hans Petter Langtangen

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 743

ISBN-13: 3662054507

DOWNLOAD EBOOK

Scripting with Python makes you productive and increases the reliability of your scientific work. Here, the author teaches you how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in Python. The focus is on examples and applications of relevance to computational science: gluing existing applications and tools, e.g. for automating simulation, data analysis, and visualization; steering simulations and computational experiments; equipping programs with graphical user interfaces; making computational Web services; creating interactive interfaces with a Maple/Matlab-like syntax to numerical applications in C/C++ or Fortran; and building flexible object-oriented programming interfaces to existing C/C++ or Fortran libraries.


A Primer on Scientific Programming with Python

A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer

Published: 2016-07-28

Total Pages: 942

ISBN-13: 3662498871

DOWNLOAD EBOOK

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015


Introduction to Modeling and Simulation with MATLAB® and Python

Introduction to Modeling and Simulation with MATLAB® and Python

Author: Steven I. Gordon

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 211

ISBN-13: 1498773885

DOWNLOAD EBOOK

Introduction to Modeling and Simulation with MATLAB and Python is intended for students and professionals in science, social science, and engineering that wish to learn the principles of computer modeling, as well as basic programming skills. The book content focuses on meeting a set of basic modeling and simulation competencies that were developed as part of several National Science Foundation grants. Even though computer science students are much more expert programmers, they are not often given the opportunity to see how those skills are being applied to solve complex science and engineering problems and may also not be aware of the libraries used by scientists to create those models. The book interleaves chapters on modeling concepts and related exercises with programming concepts and exercises. The authors start with an introduction to modeling and its importance to current practices in the sciences and engineering. They introduce each of the programming environments and the syntax used to represent variables and compute mathematical equations and functions. As students gain more programming expertise, the authors return to modeling concepts, providing starting code for a variety of exercises where students add additional code to solve the problem and provide an analysis of the outcomes. In this way, the book builds both modeling and programming expertise with a "just-in-time" approach so that by the end of the book, students can take on relatively simple modeling example on their own. Each chapter is supplemented with references to additional reading, tutorials, and exercises that guide students to additional help and allows them to practice both their programming and analytical modeling skills. In addition, each of the programming related chapters is divided into two parts – one for MATLAB and one for Python. In these chapters, the authors also refer to additional online tutorials that students can use if they are having difficulty with any of the topics. The book culminates with a set of final project exercise suggestions that incorporate both the modeling and programming skills provided in the rest of the volume. Those projects could be undertaken by individuals or small groups of students. The companion website at http://www.intromodeling.com provides updates to instructions when there are substantial changes in software versions, as well as electronic copies of exercises and the related code. The website also offers a space where people can suggest additional projects they are willing to share as well as comments on the existing projects and exercises throughout the book. Solutions and lecture notes will also be available for qualifying instructors.


Python for Scientists

Python for Scientists

Author: John M. Stewart

Publisher: Cambridge University Press

Published: 2017-07-20

Total Pages: 272

ISBN-13: 1316641236

DOWNLOAD EBOOK

Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.


Effective Computation in Physics

Effective Computation in Physics

Author: Anthony Scopatz

Publisher: "O'Reilly Media, Inc."

Published: 2015-06-25

Total Pages: 567

ISBN-13: 1491901586

DOWNLOAD EBOOK

More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures