Levy Processes in Credit Risk

Levy Processes in Credit Risk

Author: Wim Schoutens

Publisher: John Wiley & Sons

Published: 2010-06-15

Total Pages: 213

ISBN-13: 0470685069

DOWNLOAD EBOOK

This book is an introductory guide to using Lévy processes for credit risk modelling. It covers all types of credit derivatives: from the single name vanillas such as Credit Default Swaps (CDSs) right through to structured credit risk products such as Collateralized Debt Obligations (CDOs), Constant Proportion Portfolio Insurances (CPPIs) and Constant Proportion Debt Obligations (CPDOs) as well as new advanced rating models for Asset Backed Securities (ABSs). Jumps and extreme events are crucial stylized features, essential in the modelling of the very volatile credit markets - the recent turmoil in the credit markets has once again illustrated the need for more refined models. Readers will learn how the classical models (driven by Brownian motions and Black-Scholes settings) can be significantly improved by using the more flexible class of Lévy processes. By doing this, extreme event and jumps can be introduced into the models to give more reliable pricing and a better assessment of the risks. The book brings in high-tech financial engineering models for the detailed modelling of credit risk instruments, setting up the theoretical framework behind the application of Lévy Processes to Credit Risk Modelling before moving on to the practical implementation. Complex credit derivatives structures such as CDOs, ABSs, CPPIs, CPDOs are analysed and illustrated with market data.


Ruin Probabilities

Ruin Probabilities

Author: S?ren Asmussen

Publisher: World Scientific

Published: 2010

Total Pages: 621

ISBN-13: 9814282529

DOWNLOAD EBOOK

The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cram‚r?Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber?Shiu functions and dependence.


Non-Life Insurance Mathematics

Non-Life Insurance Mathematics

Author: Thomas Mikosch

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 435

ISBN-13: 3540882332

DOWNLOAD EBOOK

"Offers a mathematical introduction to non-life insurance and, at the same time, to a multitude of applied stochastic processes. It gives detailed discussions of the fundamental models for claim sizes, claim arrivals, the total claim amount, and their probabilistic properties....The reader gets to know how the underlying probabilistic structures allow one to determine premiums in a portfolio or in an individual policy." --Zentralblatt für Didaktik der Mathematik


Risk, Ruin and Survival

Risk, Ruin and Survival

Author: Ricardas Zitikis

Publisher: MDPI

Published: 2020-04-02

Total Pages: 210

ISBN-13: 3039285165

DOWNLOAD EBOOK

Developing techniques for assessing various risks and calculating probabilities of ruin and survival are exciting topics for mathematically-inclined academics. For practicing actuaries and financial engineers, the resulting insights have provided enormous opportunities but also created serious challenges to overcome, thus facilitating closer cooperation between industries and academic institutions. In this book, several renown researchers with extensive interdisciplinary research experiences share their thoughts that, in one way or another, contribute to the betterment of practice and theory of decision making under uncertainty. Behavioral, cultural, mathematical, and statistical aspects of risk assessment and modelling have been explored, and have been often illustrated using real and simulated data. Topics range from financial and insurance risks to security-type risks, from one-dimensional to multi- and even infinite-dimensional risks. The articles in the book were written with a broad audience in mind and should provide enjoyable reading for those with university level degrees and/or those who have studied for accreditation by various actuarial and financial societies.


Financial Signal Processing and Machine Learning

Financial Signal Processing and Machine Learning

Author: Ali N. Akansu

Publisher: John Wiley & Sons

Published: 2016-04-21

Total Pages: 312

ISBN-13: 1118745639

DOWNLOAD EBOOK

The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.


RETRACTED BOOK: 151 Trading Strategies

RETRACTED BOOK: 151 Trading Strategies

Author: Zura Kakushadze

Publisher: Springer

Published: 2018-12-13

Total Pages: 480

ISBN-13: 3030027929

DOWNLOAD EBOOK

The book provides detailed descriptions, including more than 550 mathematical formulas, for more than 150 trading strategies across a host of asset classes and trading styles. These include stocks, options, fixed income, futures, ETFs, indexes, commodities, foreign exchange, convertibles, structured assets, volatility, real estate, distressed assets, cash, cryptocurrencies, weather, energy, inflation, global macro, infrastructure, and tax arbitrage. Some strategies are based on machine learning algorithms such as artificial neural networks, Bayes, and k-nearest neighbors. The book also includes source code for illustrating out-of-sample backtesting, around 2,000 bibliographic references, and more than 900 glossary, acronym and math definitions. The presentation is intended to be descriptive and pedagogical and of particular interest to finance practitioners, traders, researchers, academics, and business school and finance program students.


Markov Decision Processes

Markov Decision Processes

Author: Martin L. Puterman

Publisher: John Wiley & Sons

Published: 2014-08-28

Total Pages: 544

ISBN-13: 1118625870

DOWNLOAD EBOOK

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association


The Craft of Probabilistic Modelling

The Craft of Probabilistic Modelling

Author: J. Gani

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 323

ISBN-13: 1461386314

DOWNLOAD EBOOK

This book brings together the personal accounts and reflections of nineteen mathematical model-builders, whose specialty is probabilistic modelling. The reader may well wonder why, apart from personal interest, one should commission and edit such a collection of articles. There are, of course, many reasons, but perhaps the three most relevant are: (i) a philosophicaJ interest in conceptual models; this is an interest shared by everyone who has ever puzzled over the relationship between thought and reality; (ii) a conviction, not unsupported by empirical evidence, that probabilistic modelling has an important contribution to make to scientific research; and finally (iii) a curiosity, historical in its nature, about the complex interplay between personal events and the development of a field of mathematical research, namely applied probability. Let me discuss each of these in turn. Philosophical Abstraction, the formation of concepts, and the construction of conceptual models present us with complex philosophical problems which date back to Democritus, Plato and Aristotle. We have all, at one time or another, wondered just how we think; are our thoughts, concepts and models of reality approxim&tions to the truth, or are they simply functional constructs helping us to master our environment? Nowhere are these problems more apparent than in mathematical model ling, where idealized concepts and constructions replace the imperfect realities for which they stand.


Pricing Derivatives Under Lévy Models

Pricing Derivatives Under Lévy Models

Author: Andrey Itkin

Publisher: Birkhäuser

Published: 2017-02-27

Total Pages: 318

ISBN-13: 1493967924

DOWNLOAD EBOOK

This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the theory of finite-difference schemes, is new as applied to the Lévy processes in finance, and is herein presented for the first time in a single volume. The results within, developed in a series of research papers, are collected and arranged together with the necessary background material from Lévy processes, the modern theory of finite-difference schemes, the theory of M-matrices and EM-matrices, etc., thus forming a self-contained work that gives the reader a smooth introduction to the subject. For readers with no knowledge of finance, a short explanation of the main financial terms and notions used in the book is given in the glossary. The latter part of the book demonstrates the efficacy of the method by solving some typical problems encountered in computational finance, including structural default models with jumps, and local stochastic volatility models with stochastic interest rates and jumps. The author also adds extra complexity to the traditional statements of these problems by taking into account jumps in each stochastic component while all jumps are fully correlated, and shows how this setting can be efficiently addressed within the framework of the new method. Written for non-mathematicians, this book will appeal to financial engineers and analysts, econophysicists, and researchers in applied numerical analysis. It can also be used as an advance course on modern finite-difference methods or computational finance.


Effective Statistical Learning Methods for Actuaries I

Effective Statistical Learning Methods for Actuaries I

Author: Michel Denuit

Publisher: Springer Nature

Published: 2019-09-03

Total Pages: 452

ISBN-13: 3030258203

DOWNLOAD EBOOK

This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.