The Smoothed Particle Hydrodynamics (SPH) method is proposed for studying hydrodynamic processes related to nuclear engineering problems. A problem of possible recriticality due to the sloshing motions of the molten reactor core is studied with SPH method. The accuracy of the numerical solution obtained in this study with the SPH method is significantly higher than that obtained with the SIMMER-III/IV reactor safety analysis code.
This book highlights the advances and trends in the safety analysis of sodium-cooled fast reactors, especially from the perspective of particle bed-related phenomena during core disruptive accidents. A sodium-cooled fast reactor (SFR) is an optimized candidate of the next-generation nuclear reactor systems. Its safety is a critical issue during its R&D process. The book elaborates on research progresses in particle bed-related phenomena in terms of the molten-pool mobility, the molten-pool sloshing motion, the debris bed formation behavior, and the debris bed self-leveling behavior. The book serves as a good reference for researchers, professionals, and postgraduate students interested in sodium-cooled fast reactors. Knowledge provided is also useful for those who are engaging in severe accident analysis for lead-cooled fast reactors and light water reactors.
Oil spills at sea are a severe environmental concern. They can occur during the various stages of well-drilling, repair operations or transportation. The spreading of oil occurs due to the pollutant's tendency to flow over itself. Knowledge of its physical properties during the phenomenon, such as velocities and spatial positions, allows the timely adoption of environmental protection measures. This book presents, in a simple and objective way, the development and implementation of purely Lagrangian numerical modelling using the Smoothed Particle Hydrodynamics (SPH) method for the study of the spreading of oil in its first stage (gravity-inertial regime) on a calm sea. The computational code's implementation and validation were carried out through the simulation of classical problems in the scientific literature, i.e., heat diffusion in a homogeneous flat plate, a still volume of water inside an immobile reservoir and a dam failure. From the coupling of the software with a collision detection and response algorithm, numerical results in concordance with the curve adjusted by James Fay (a pioneering scientist in the study of oil spills) for the prediction of oil slick diameters at the end of the gravity-inertial regime were achieved.
This proceedings volume contains selected papers from the Fourth International Conference on Big Data Applications and Services (BigDAS 2017), held in Tashkent, Uzbekistan on August 15-18, 2017. Big data has become a core technology providing innovative solutions in many fields including social media, healthcare and manufacturing. The Fourth International Conference on Big Data Applications and Services (BigDAS 2017) presented innovative results, encouraged academic and industrial interaction, and promoted collaborative research in the field of big data worldwide. The conference was organized by the Korea Big Data Services Society and National University of Uzbekistan.
High fidelity nuclear reactor thermal hydraulic simulations are a hot research topic in the development of nuclear engineering technology. The three-dimensional Computational Fluid Dynamics (CFD) and Computational Multi-phase Fluid Dynamics (CMFD) methods have attracted significant attention in predicting single-phase and multi-phase flows under steady-state or transient scenarios in the field of nuclear reactor engineering. Compared with three-dimensional thermal hydraulic methods, the traditional one-dimensional system analysis method contains inherent defects in the required accuracy and spatial resolution for a number of important nuclear reactor thermal-hydraulic phenomena. At present the CFD method has been widely adopted in the nuclear industry, across both light water reactors and liquid metal cooled fast reactors, providing an effective solution for complex issues of thermal hydraulic analysis. However, the CFD method employs empirical models for turbulence simulation, heat transfer, multi-phase interaction and chemical reactions. Such models must be validated before they can be used with confidence in nuclear reactor applications. In addition, user practice guidelines play a critical role in achieving reliable results from CFD simulations.
This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.
This open access book offers a timely guide to challenges and current practices to permanently plug and abandon hydrocarbon wells. With a focus on offshore North Sea, it analyzes the process of plug and abandonment of hydrocarbon wells through the establishment of permanent well barriers. It provides the reader with extensive knowledge on the type of barriers, their functioning and verification. It then discusses plug and abandonment methodologies, analyzing different types of permanent plugging materials. Last, it describes some tests for verifying the integrity and functionality of installed permanent barriers. The book offers a comprehensive reference guide to well plugging and abandonment (P&A) and well integrity testing. The book also presents new technologies that have been proposed to be used in plugging and abandoning of wells, which might be game-changing technologies, but they are still in laboratory or testing level. Given its scope, it addresses students and researchers in both academia and industry. It also provides information for engineers who work in petroleum industry and should be familiarized with P&A of hydrocarbon wells to reduce the time of P&A by considering it during well planning and construction.
Moving Particle Semi-implicit Method: A Meshfree Particle Method for Fluid Dynamics begins by familiarizing the reader with basic theory that supports their journey through sections on advanced MPH methods. The unique insights that this method provides include fluid-structure interaction, non-Newtonian flow, and cavitation, making it relevant to a wide range of applications in the mechanical, structural, and nuclear industries, and in bioengineering. Co-authored by the originator of the MPS method, this book is the most authoritative guide available. It will be of great value to students, academics and researchers in industry. - Presents the differences between MPH and SPH, helping readers choose between methods for different purposes - Provides pieces of computer code that readers can use in their own simulations - Includes the full, extended algorithms - Explores the use of MPS in a range of industries and applications, including practical advice
Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability. - Contains a systematic and comprehensive review of current approaches to the thermal-hydraulic analysis of water-cooled and moderated nuclear reactors - Clearly presents the relationship between system level (top-down analysis) and component level phenomenology (bottom-up analysis) - Provides a strong focus on nuclear system thermal hydraulic (SYS TH) codes - Presents detailed coverage of the applications of thermal-hydraulics to demonstrate the safety and acceptability of nuclear power plants