A Simple Two-equation Turbulence Model for Transition-sensitive CFD Simulations of Missile Nose-cone Geometries

A Simple Two-equation Turbulence Model for Transition-sensitive CFD Simulations of Missile Nose-cone Geometries

Author: Joseph Matthew Jones

Publisher:

Published: 2007

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This study reports the development and validation of a modified two-equation eddy-viscosity turbulence model for computational fluid dynamics prediction of transitional and turbulent flows. The existing terms of the standard k-w model have been modified to include transitional flow effects, within the framework of Reynolds-averaged, eddy-viscosity turbulence modeling. The new model has been implemented into the commercially available flow solver FLUENT and the Mississippi State University SimCenter developed flow solver U2NCLE. Test cases included flow over a flat plate, a 2-D circular cylinder in a crossflow, a 3-D cylindrical body and three conical geometries, which represent the nose-cones of aerodynamic vehicles such as missiles. The results illustrate the ability of the model to yield reasonable predictions of transitional flow behavior using a simple modeling framework, including an appropriate response to freestream turbulence quantities, boundary-layer separation, and angle of attack.


A SIMPLE TWO-EQUATION TURBULENCE MODEL FOR TRANSITION-SENSITIVE CFD SIMULATIONS OF MISSILE NOSE-CONE GEOMETRIES.

A SIMPLE TWO-EQUATION TURBULENCE MODEL FOR TRANSITION-SENSITIVE CFD SIMULATIONS OF MISSILE NOSE-CONE GEOMETRIES.

Author:

Publisher:

Published: 2001

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This study reports the development and validation of a modified two-equation eddy-viscosity turbulence model for computational fluid dynamics prediction of transitional and turbulent flows. The existing terms of the standard k-w model have been modified to include transitional flow effects, within the framework of Reynolds-averaged, eddy-viscosity turbulence modeling. The new model has been implemented into the commercially available flow solver FLUENT and the Mississippi State University SimCenter developed flow solver U2NCLE. Test cases included flow over a flat plate, a 2-D circular cylinder in a crossflow, a 3-D cylindrical body and three conical geometries, which represent the nose-cones of aerodynamic vehicles such as missiles. The results illustrate the ability of the model to yield reasonable predictions of transitional flow behavior using a simple modeling framework, including an appropriate response to freestream turbulence quantities, boundary-layer separation, and angle of attack.


Engineering Turbulence Modelling and Experiments 5

Engineering Turbulence Modelling and Experiments 5

Author: W. Rodi

Publisher: Elsevier

Published: 2002-08-21

Total Pages: 1029

ISBN-13: 008053094X

DOWNLOAD EBOOK

Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.


Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows

Author: P. A. Durbin

Publisher: John Wiley & Sons

Published: 2011-06-28

Total Pages: 347

ISBN-13: 1119957524

DOWNLOAD EBOOK

Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.


Modeling and Simulation of Turbulent Flows

Modeling and Simulation of Turbulent Flows

Author: Roland Schiestel

Publisher: John Wiley & Sons

Published: 2010-01-05

Total Pages: 751

ISBN-13: 0470393467

DOWNLOAD EBOOK

This title provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.


Engineering Turbulence Modelling and Experiments 6

Engineering Turbulence Modelling and Experiments 6

Author: Wolfgang Rodi

Publisher: Elsevier

Published: 2005-05-05

Total Pages: 1011

ISBN-13: 0080530958

DOWNLOAD EBOOK

Proceedings of the world renowned ERCOFTAC (International Symposium on Engineering Turbulence Modelling and Measurements).The proceedings include papers dealing with the following areas of turbulence:·Eddy-viscosity and second-order RANS models ·Direct and large-eddy simulations and deductions for conventional modelling ·Measurement and visualization techniques, experimental studies ·Turbulence control ·Transition and effects of curvature, rotation and buoyancy on turbulence ·Aero-acoustics ·Heat and mass transfer and chemically reacting flows ·Compressible flows, shock phenomena ·Two-phase flows ·Applications in aerospace engineering, turbomachinery and reciprocating engines, industrial aerodynamics and wind engineering, and selected chemical engineering problems Turbulence remains one of the key issues in tackling engineering flow problems. These problems are solved more and more by CFD analysis, the reliability of which depends strongly on the performance of the turbulence models employed. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation. As in other fields of Science, in the rapidly developing discipline of turbulence, swift progress can be achieved only by keeping up to date with recent advances all over the world and by exchanging ideas with colleagues active in related fields.


Numerical Simulation of Turbulent Flows and Noise Generation

Numerical Simulation of Turbulent Flows and Noise Generation

Author: Christophe Brun

Publisher: Springer Science & Business Media

Published: 2009-03-07

Total Pages: 344

ISBN-13: 3540899561

DOWNLOAD EBOOK

Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.


Turbulence Modelling Approaches

Turbulence Modelling Approaches

Author: Konstantin Volkov

Publisher: BoD – Books on Demand

Published: 2017-07-26

Total Pages: 252

ISBN-13: 9535133497

DOWNLOAD EBOOK

Accurate prediction of turbulent flows remains a challenging task despite considerable work in this area and the acceptance of CFD as a design tool. The quality of the CFD calculations of the flows in engineering applications strongly depends on the proper prediction of turbulence phenomena. Investigations of flow instability, heat transfer, skin friction, secondary flows, flow separation, and reattachment effects demand a reliable modelling and simulation of the turbulence, reliable methods, accurate programming, and robust working practices. The current scientific status of simulation of turbulent flows as well as some advances in computational techniques and practical applications of turbulence research is reviewed and considered in the book.


An Investigation Into the Numerical Prediction of Boundary Layer Transition Using the K. Y. Chien Turbulence Model

An Investigation Into the Numerical Prediction of Boundary Layer Transition Using the K. Y. Chien Turbulence Model

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-17

Total Pages: 194

ISBN-13: 9781722938598

DOWNLOAD EBOOK

Assessments were made of the simulation capabilities of transition models developed at the University of Minnesota, as applied to the Launder-Sharma and Lam-Bremhorst two-equation turbulence models, and at The University of Texas at Austin, as applied to the K. Y. Chien two-equation turbulence model. A major shortcoming in the use of the basic K. Y. Chien turbulence model for low-Reynolds number flows was identified. The problem with the Chien model involved premature start of natural transition and a damped response as the simulation moved to fully turbulent flow at the end of transition. This is in contrast to the other two-equation turbulence models at comparable freestream turbulence conditions. The damping of the transition response of the Chien turbulence model leads to an inaccurate estimate of the start and end of transition for freestream turbulence levels greater than 1.0 percent and to difficulty in calculating proper model constants for the transition model. Stephens, Craig A. and Crawford, Michael E. Unspecified Center BOUNDARY LAYER TRANSITION; MATHEMATICAL MODELS; PREDICTIONS; TURBULENCE MODELS; TURBULENT FLOW; COMPUTERIZED SIMULATION; DAMPING; LOW REYNOLDS NUMBER; TURBINE BLADES...