A Short History of Mathematical Population Dynamics

A Short History of Mathematical Population Dynamics

Author: Nicolas Bacaër

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 160

ISBN-13: 0857291157

DOWNLOAD EBOOK

As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine. The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.


Mathematics in Population Biology

Mathematics in Population Biology

Author: Horst R. Thieme

Publisher: Princeton University Press

Published: 2018-06-05

Total Pages: 564

ISBN-13: 0691187657

DOWNLOAD EBOOK

The formulation, analysis, and re-evaluation of mathematical models in population biology has become a valuable source of insight to mathematicians and biologists alike. This book presents an overview and selected sample of these results and ideas, organized by biological theme rather than mathematical concept, with an emphasis on helping the reader develop appropriate modeling skills through use of well-chosen and varied examples. Part I starts with unstructured single species population models, particularly in the framework of continuous time models, then adding the most rudimentary stage structure with variable stage duration. The theme of stage structure in an age-dependent context is developed in Part II, covering demographic concepts, such as life expectation and variance of life length, and their dynamic consequences. In Part III, the author considers the dynamic interplay of host and parasite populations, i.e., the epidemics and endemics of infectious diseases. The theme of stage structure continues here in the analysis of different stages of infection and of age-structure that is instrumental in optimizing vaccination strategies. Each section concludes with exercises, some with solutions, and suggestions for further study. The level of mathematics is relatively modest; a "toolbox" provides a summary of required results in differential equations, integration, and integral equations. In addition, a selection of Maple worksheets is provided. The book provides an authoritative tour through a dazzling ensemble of topics and is both an ideal introduction to the subject and reference for researchers.


Mathematical Models

Mathematical Models

Author: Richard Haberman

Publisher: SIAM

Published: 1998-12-01

Total Pages: 412

ISBN-13: 0898714087

DOWNLOAD EBOOK

The author uses mathematical techniques to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow.


Population Dynamics for Conservation

Population Dynamics for Conservation

Author: Louis W. Botsford

Publisher:

Published: 2019

Total Pages: 353

ISBN-13: 0198758367

DOWNLOAD EBOOK

Provides a coherent overview of the theory of single population dynamics, discussing concepts such as population variability, population stability, population viability/persistence, and harvest yield while later chapters address specific applications to conservation and management.


Nonlinear Dynamics of Interacting Populations

Nonlinear Dynamics of Interacting Populations

Author: A. D. Bazykin

Publisher: World Scientific

Published: 1998

Total Pages: 224

ISBN-13: 9789810216856

DOWNLOAD EBOOK

This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.


Complex Population Dynamics

Complex Population Dynamics

Author: Peter Turchin

Publisher: Princeton University Press

Published: 2003-02-02

Total Pages: 470

ISBN-13: 0691090211

DOWNLOAD EBOOK

Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.


Galileo Unbound

Galileo Unbound

Author: David D. Nolte

Publisher: Oxford University Press

Published: 2018-07-12

Total Pages: 384

ISBN-13: 0192528505

DOWNLOAD EBOOK

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.


Population Dynamics: Algebraic And Probabilistic Approach

Population Dynamics: Algebraic And Probabilistic Approach

Author: Utkir A Rozikov

Publisher: World Scientific

Published: 2020-04-22

Total Pages: 458

ISBN-13: 9811211248

DOWNLOAD EBOOK

A population is a summation of all the organisms of the same group or species, which live in a particular geographical area, and have the capability of interbreeding. The main mathematical problem for a given population is to carefully examine the evolution (time dependent dynamics) of the population. The mathematical methods used in the study of this problem are based on probability theory, stochastic processes, dynamical systems, nonlinear differential and difference equations, and (non-)associative algebras.A state of a population is a distribution of probabilities of the different types of organisms in every generation. Type partition is called differentiation (for example, sex differentiation which defines a bisexual population). This book systematically describes the recently developed theory of (bisexual) population, and mainly contains results obtained since 2010.The book presents algebraic and probabilistic approaches in the theory of population dynamics. It also includes several dynamical systems of biological models such as dynamics generated by Markov processes of cubic stochastic matrices; dynamics of sex-linked population; dynamical systems generated by a gonosomal evolution operator; dynamical system and an evolution algebra of mosquito population; and ocean ecosystems.The main aim of this book is to facilitate the reader's in-depth understanding by giving a systematic review of the theory of population dynamics which has wide applications in biology, mathematics, medicine, and physics.


Age-Structured Population Dynamics in Demography and Epidemiology

Age-Structured Population Dynamics in Demography and Epidemiology

Author: Hisashi Inaba

Publisher: Springer

Published: 2017-03-15

Total Pages: 566

ISBN-13: 981100188X

DOWNLOAD EBOOK

This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.


A Primer on Population Dynamics Modeling

A Primer on Population Dynamics Modeling

Author: Hiromi Seno

Publisher: Springer Nature

Published: 2022-11-16

Total Pages: 471

ISBN-13: 981196016X

DOWNLOAD EBOOK

This textbook provides an introduction to the mathematical models of population dynamics in mathematical biology. The focus of this book is on the biological meaning/translation of mathematical structures in mathematical models, rather than simply explaining mathematical details and literacies to analyze a model. In some recent usages of the mathematical model simply with computer numerical calculations, the model includes some inappropriate mathematical structure concerning the reasonability of modeling for the biological problem under investigation. For students and researchers who study or use mathematical models, it is important and helpful to understand what mathematical setup could be regarded as reasonable for the model with respect to the relation between the biological factors involved in the assumptions and the mathematical structure of the model. Topics covered in this book are; modeling with geometric progression, density effect in population dynamics, deriving continuous time models from discrete time models, basic modeling for birth-death stochastic processes, continuous time models, modeling interspecific reaction for the continuous time population dynamics model, competition and prey-predator dynamics, modeling for population dynamics with a heterogeneous structure of population, qualitative analysis on the discrete time dynamical system, necessary knowledge about fundamental mathematical theories to understand the dynamical nature of continuous time models. The book includes popular topics in ecology and mathematical biology, as well as classic theoretical topics. By understanding the biological meaning of modeling for simple models, readers will be able to derive a specific mathematical model for a biological problem by reasonable modeling. The contents of this book is made accessible for readers without strong Mathematical background.