A Second Course in Complex Analysis

A Second Course in Complex Analysis

Author: William A. Veech

Publisher: Courier Corporation

Published: 2014-08-04

Total Pages: 257

ISBN-13: 048615193X

DOWNLOAD EBOOK

A clear, self-contained treatment of important areas in complex analysis, this text is geared toward upper-level undergraduates and graduate students. The material is largely classical, with particular emphasis on the geometry of complex mappings. Author William A. Veech, the Edgar Odell Lovett Professor of Mathematics at Rice University, presents the Riemann mapping theorem as a special case of an existence theorem for universal covering surfaces. His focus on the geometry of complex mappings makes frequent use of Schwarz's lemma. He constructs the universal covering surface of an arbitrary planar region and employs the modular function to develop the theorems of Landau, Schottky, Montel, and Picard as consequences of the existence of certain coverings. Concluding chapters explore Hadamard product theorem and prime number theorem.


A Course in Complex Analysis

A Course in Complex Analysis

Author: Saeed Zakeri

Publisher: Princeton University Press

Published: 2021-11-02

Total Pages: 442

ISBN-13: 0691207585

DOWNLOAD EBOOK

"This textbook is intended for a year-long graduate course on complex analysis, a branch of mathematical analysis that has broad applications, particularly in physics, engineering, and applied mathematics. Based on nearly twenty years of classroom lectures, the book is accessible enough for independent study, while the rigorous approach will appeal to more experienced readers and scholars, propelling further research in this field. While other graduate-level complex analysis textbooks do exist, Zakeri takes a distinctive approach by highlighting the geometric properties and topological underpinnings of this area. Zakeri includes more than three hundred and fifty problems, with problem sets at the end of each chapter, along with additional solved examples. Background knowledge of undergraduate analysis and topology is needed, but the thoughtful examples are accessible to beginning graduate students and advanced undergraduates. At the same time, the book has sufficient depth for advanced readers to enhance their own research. The textbook is well-written, clearly illustrated, and peppered with historical information, making it approachable without sacrificing rigor. It is poised to be a valuable textbook for graduate students, filling a needed gap by way of its level and unique approach"--


Function Theory on Planar Domains

Function Theory on Planar Domains

Author: Stephen D. Fisher

Publisher: Courier Corporation

Published: 2014-06-10

Total Pages: 292

ISBN-13: 0486151107

DOWNLOAD EBOOK

A high-level treatment of complex analysis, this text focuses on function theory on a finitely connected planar domain. Clear and complete, it emphasizes domains bounded by a finite number of disjoint analytic simple closed curves. The first chapter and parts of Chapters 2 and 3 offer background material, all of it classical and important in its own right. The remainder of the text presents results in complex analysis from the far, middle, and recent past, all selected for their interest and merit as substantive mathematics. Suitable for upper-level undergraduates and graduate students, this text is accessible to anyone with a background in complex and functional analysis. Author Stephen D. Fisher, a professor of mathematics at Northwestern University, elaborates upon and extends results with a set of exercises at the end of each chapter.


Applied Complex Variables

Applied Complex Variables

Author: John W. Dettman

Publisher: Courier Corporation

Published: 2012-05-07

Total Pages: 514

ISBN-13: 0486158284

DOWNLOAD EBOOK

Fundamentals of analytic function theory — plus lucid exposition of 5 important applications: potential theory, ordinary differential equations, Fourier transforms, Laplace transforms, and asymptotic expansions. Includes 66 figures.


A Second Course in Mathematical Analysis

A Second Course in Mathematical Analysis

Author: J. C. Burkill

Publisher: Cambridge University Press

Published: 2002-10-24

Total Pages: 536

ISBN-13: 9780521523431

DOWNLOAD EBOOK

A classic calculus text reissued in the Cambridge Mathematical Library. Clear and logical, with many examples.


A Companion to Analysis

A Companion to Analysis

Author: Thomas William Körner

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 608

ISBN-13: 0821834479

DOWNLOAD EBOOK

This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.


Complex Analysis

Complex Analysis

Author: Theodore W. Gamelin

Publisher: Springer Science & Business Media

Published: 2013-11-01

Total Pages: 508

ISBN-13: 0387216073

DOWNLOAD EBOOK

An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.


A First Course in Complex Analysis with Applications

A First Course in Complex Analysis with Applications

Author: Dennis Zill

Publisher: Jones & Bartlett Learning

Published: 2009

Total Pages: 471

ISBN-13: 0763757721

DOWNLOAD EBOOK

The new Second Edition of A First Course in Complex Analysis with Applications is a truly accessible introduction to the fundamental principles and applications of complex analysis. Designed for the undergraduate student with a calculus background but no prior experience with complex variables, this text discusses theory of the most relevant mathematical topics in a student-friendly manor. With Zill's clear and straightforward writing style, concepts are introduced through numerous examples and clear illustrations. Students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section on the applications of complex variables, providing students with the opportunity to develop a practical and clear understanding of complex analysis.


Complex Analysis in one Variable

Complex Analysis in one Variable

Author: NARASIMHAN

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 282

ISBN-13: 1475711069

DOWNLOAD EBOOK

This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.


A Course in Complex Analysis

A Course in Complex Analysis

Author: Wolfgang Fischer

Publisher: Springer Science & Business Media

Published: 2011-10-21

Total Pages: 280

ISBN-13: 3834886610

DOWNLOAD EBOOK

This carefully written textbook is an introduction to the beautiful concepts and results of complex analysis. It is intended for international bachelor and master programmes in Germany and throughout Europe; in the Anglo-American system of university education the content corresponds to a beginning graduate course. The book presents the fundamental results and methods of complex analysis and applies them to a study of elementary and non-elementary functions (elliptic functions, Gamma- and Zeta function including a proof of the prime number theorem ...) and – a new feature in this context! – to exhibiting basic facts in the theory of several complex variables. Part of the book is a translation of the authors’ German text “Einführung in die komplexe Analysis”; some material was added from the by now almost “classical” text “Funktionentheorie” written by the authors, and a few paragraphs were newly written for special use in a master’s programme.