NASA presents information about the astronomy project to map the exploration of nearby planets and orbiting stars. The project consists of a consortium of many institutions to create a space-based optical interferometer, the study of dust clouds around stars, and more. Information about support ground-based programs, supporting space missions, and other details about the project are available.
Astrobiology, a new exciting interdisciplinary research field, seeks to unravel the origin and evolution of life wherever it might exist in the Universe. The current view of the origin of life on Earth is that it is strongly connected to the origin and evolution of our planet and, indeed, of the Universe as a whole. We are fortunate to be living in an era where centuries of speculation about the two ancient and fundamental problems: the origin of life and its prevalence in the Universe are being replaced by experimental science. The subject of Astrobiology can be approached from many different perspectives. This book is focused on abiogenic organic matter from the viewpoint of astronomy and planetary science and considers its potential relevance to the origins of life on Earth and elsewhere. Guided by the review papers in this book, the concluding chapter aims to identify key questions to motivate future research and stimulate astrobiological applications of current and future research facilities and space missions. Today’s rich array of new spacecraft, telescopes and dedicated scientists promises a steady flow of discoveries and insights that will ultimately lead us to the answers we seek.
The question of the existence of other worlds and other living beings has been present in the human quest for knowledge since as far as Epicurus. For centuries this question belonged to the fields of philosophy and theology. The theoretical problem of the formation of the Solar System, and hence of other planetary systems, was tackled only during the 18th century, while the first observational attempts for a detection started less than one hundred years ago. Direct observation of an extra-solar planetary system is an extraordinarily difficult problem: extra-solar planets are at huge distances, are incredibly faint and are overwhelmed by the bright light of their own stars. With virtually no observational insight to test their models, theoreticians have remained for decades in a difficult position to make substantial progress. Yet, the field of stellar formation has provided since the 1980s both the the oretical and observational evidences for the formation of discs at the stage of star birth and for debris materials orbiting the very young stellar systems. It was tempting to consider that these left-overs might indeed later agglomerate into planetary systems more or less similar to ours. Then came observational evidences for planets outside the Solar System.
The past year has produced some of the most exciting results in the history of astronomy, particularly in the area of planets outside our solar system. Only a half-year before our meeting in Toledo, Spain, the first unambiguous detection of planet-sized masses orbiting main sequence stars were reported. Since that time, evidence for a new exo planet has been reported almost at the rate of about once per month. Some of these objects are likely to turn out to be very low-mass stars, but something like half show characteristics - Jupiter-like mass and near-zero orbital eccentricity - which appear to be unique to planets. Almost at the same time that giant planets were being discovered regularly, the two major space agencies, ESA and NASA, have iden tified searches for and detailed study of Earth-like planets as a major priority for the future. In ESA's "Horizon 2000 Plus" programme, an infrared interferometer has been proposed as a possible future Cor nerstone mission. Similarly, scientists in the US produced the "Road Map for the Exploration of Neighboring Planetary Systems (ExNPS)", which provided NASA with a long-term plan which leads also to an infrared interferometer in space to study hypothetical Earth-like worlds beyond our Solar System. Such an observatory is designed to search for the thermal emission from a family of planets, using interferometric nulling to remove the contaminating light from the central star.
In the last decade, our knowledge of the outer solar system has been transformed as a result of the Voyager 2 encounter with Neptune and its satellite Triton and from Earth-based observations of the Pluto-Charon system. However, the planetary system does not simply end at the distance of Pluto and Neptune. In the past few years, dozens of bodies have been discovered in near-circular, low inclination orbits near or beyond the orbit of Neptune. These bodies are now believed to be directly related to each other and to Pluto, Charon, and Triton, and as a class they define and occupy the inner boundary of a hitherto unexplored component of the solar system, the trans-neptunian region. Exploring the Trans-Neptunian Solar System reviews current understanding of the trans-neptunian solar system and makes recommendations for the future exploration of this distant realm.
Are we alone in the universe? From canals on Mars to the search for ET, the debate goes on. Lucid and accessible, this otherworldly guide chronicles the history of the 20th century obsession with extraterrestrials.
We are nearing a turning point in our quest for life in the universe -- we now have the capacity to detect Earth-like planets around other stars. But will we find any? In The Crowded Universe, renowned astronomer Alan Boss argues that based on what we already know about planetary systems, in the coming years we will find abundant Earths, including many that are indisputably alive. Life is not only possible elsewhere in the universe, Boss argues -- it is common. Boss describes how our ideas about planetary formation have changed radically in the past decade and brings readers up to date on discoveries of bizarre inhabitants of various solar systems, including our own. America must stay in this new space race, Boss contends, or risk being left out of one of the most profoundly important discoveries of all time: the first confirmed finding of extraterrestrial life.
“A definitive guide to astronomy’s hottest field.” —The Economist Since its formation nearly five billion years ago, our planet has been the sole living world in a vast and silent universe. But over the past two decades, astronomers have discovered thousands of “exoplanets,” including some that could be similar to our own world, and the pace of discovery is accelerating. In a fascinating account of this unfolding revolution, Lee Billings draws on interviews with the world’s top experts in the search for life beyond earth. He reveals how the search for exoplanets is not only a scientific challenge, but also a reflection of our culture’s timeless hopes, dreams, and fears.
This book addresses all those interested in the origins, development and fate of intelligent species in the observable part of our universe. In particular, the author scrutinizes what kind of information about extraterrestrial intelligent life can be inferred from our own biological, cultural and scientific evolution and the likely future of mankind. The first part of the book provides the necessary background information from space and life sciences, thus making the book also accessible to students and the scientifically educated layman. -The first book of its kind that goes beyond the popular science level.