Bent-Shaped Liquid Crystals: Structures and Physical Properties provides insight into the latest developments in the research on liquid crystals formed by bent-shaped mesogens. After a historical introduction, the expert authors discuss different kinds of mesophase structures formed by bent-shaped molecules. This book devotes the majority of its pages to physical properties such as polar switching, optics and non-linear optics, and behavior in restricted geometries. However, as chemistry is often highly relevant to the emergence of new phases, particularly with reflection symmetry breaking, it also involves a broad spectrum of interesting chemistry viewpoints.
This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.
Liquid crystals allow us to perform experiments that provide insight into fundamental problems of modern physics, such as phase transitions, frustration, elasticity, hydrodynamics, defects, growth phenomena, and optics (linear and non linear). This excellent volume meets the need for an up-to-date text on liquid crystals.Nematic and Cholesteric Liq
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Current understanding of different phases as well as the phase transitions between them has only been achieved following recent theoretical advances on the effects of dimensionality in statistical physics. P S Pershan explains the connection between these two separate areas and gives some examples of problems where the understanding is still not complete. The most important example is the second order phase transition between the nematic and smectic-A phase. Others include the relation between the several hexatic phases that have been observed and the first order restacking transitions between phases that were all previously identified as smectic-B, but which should more properly be identified as crystalline-B. Some relatively recent experimental developments on the discotic phase, liquid crystal surfaces and lyotropic phases are also included. The book includes 41 major reprints of some of the recent seminal work on the structure of liquid crystals. They are introduced by a brief review of the symmetries and other properties of liquid crystalline phases. In addition, there is a discussion of the differences between true liquid crystalline phases and others that were described as liquid crystalline in the early literature, but which have since been shown to be true three-dimensional crystals. The progression from the isotropic fluid, through the nematic, smectic, and various crystalline phases can be understood in terms of a systematic decrease in symmetry, together with an accompanying variation in structure is explained. A guide to the selected reprints and a sort of ?Rosetta Stone? for these various phases is provided. The goal of this book is to explain the systematics of this progression to students and others that are new to this field, as well as to provide a useful handbook for people already working in the field.
The self-contained properties of discotic liquid crystals (DLCs) render them powerful functional materials for many semiconducting device applications and models for energy and charge migration in self-organized dynamic functional soft materials. The past three decades have seen tremendous interest in this area, fueled primarily by the possibility
This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.
In this book we have collected a series of state-of-the art papers written by specialists in the field of ionic liquid crystals (ILCs) to address key questions concerning the synthesis, properties, and applications of ILCs. New compounds exhibiting ionic liquid crystalline phases are presented, both of calamitic as well as discotic type. Their dynamic and structural properties have been investigated with a series of experimental techniques including differential scanning calorimetry, polarized optical spectroscopy, X-ray scattering, and nuclear magnetic resonance, impedance spectroscopy to mention but a few. Moreover, computer simulations using both fully atomistic and highly coarse-grained force fields have been presented, offering an invaluable microscopic view of the structure and dynamics of these fascinating materials.