Canada Enters the Nuclear Age

Canada Enters the Nuclear Age

Author: Atomic Energy of Canada Limited

Publisher: McGill-Queen's Press - MQUP

Published: 1997

Total Pages: 466

ISBN-13: 9780773516014

DOWNLOAD EBOOK

The nuclear energy company has overseen the production of its own history, focusing on programs at its laboratories in Chalk River, Ontario, and Whiteshell, Manitoba between 1943 and 1985. The 16 scientists who wrote the narrative discuss the organization and operations of the laboratories, nuclear safety and radiation protection, radioisotopes, basic research, developing the CANDU reactor, managing the radioactive wastes, business development, and revenue generation. Canadian card order number: C97-900188-9. Annotation copyrighted by Book News, Inc., Portland, OR


Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes

Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes

Author: International Atomic Energy Agency

Publisher:

Published: 1998

Total Pages: 204

ISBN-13:

DOWNLOAD EBOOK

This report describes and assesses radiological characterization as a precursor to decommissioning. It shows the influence of the radioactive inventory on the planning and strategies of decommissioning and also presents an extensive overview of characterization results on various reactors which have been or are being decommissioned.


Nuclear Communications

Nuclear Communications

Author: International Atomic Energy Agency

Publisher:

Published: 1994

Total Pages: 82

ISBN-13:

DOWNLOAD EBOOK

The purpose of this handbook is to serve as a guideline in applying good communications practices concerning nuclear fuel cycle facilities. It provides a compact source of information for people involved in plant operation and management and identifies and addresses questions that members of the public may have about different aspects of the nuclear fuel cycle.


Nuclear Corrosion Science and Engineering

Nuclear Corrosion Science and Engineering

Author: Damien Feron

Publisher: Elsevier

Published: 2012-02-21

Total Pages: 1073

ISBN-13: 085709534X

DOWNLOAD EBOOK

Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation.This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems.With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. - Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities - Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them - Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches


Understanding and Mitigating Ageing in Nuclear Power Plants

Understanding and Mitigating Ageing in Nuclear Power Plants

Author: Philip G Tipping

Publisher: Elsevier

Published: 2010-10-26

Total Pages: 953

ISBN-13: 1845699955

DOWNLOAD EBOOK

Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation.Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth.Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types.With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers. - Introduces the reader to the role of nuclear power in the global energy mix - Reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC) - Examines topics including elimination of ageing effects, plant design, and the application of plant life management (PLiM) practices in a range of commercial nuclear reactor types