Introduction to Basic Manufacturing Processes and Workshop Technology

Introduction to Basic Manufacturing Processes and Workshop Technology

Author: Rajender Singh

Publisher: New Age International

Published: 2006-12

Total Pages: 19

ISBN-13: 8122418465

DOWNLOAD EBOOK

Manufacturing and workshop practices have become important in the industrial environment to produce products for the service of mankind. The basic need is to provide theoretical and practical knowledge of manufacturing processes and workshop technology to all the engineering students. This book covers most of the syllabus of manufacturing processes/technology, workshop technology and workshop practices for engineering (diploma and degree) classes prescribed by different universities and state technical boards.


Inertial Electrostatic Confinement (IEC) Fusion

Inertial Electrostatic Confinement (IEC) Fusion

Author: George H. Miley

Publisher: Springer Science & Business Media

Published: 2013-12-12

Total Pages: 415

ISBN-13: 1461493382

DOWNLOAD EBOOK

This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation. This book also: Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.


Liquid Metal Cooled Reactors

Liquid Metal Cooled Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2007

Total Pages: 0

ISBN-13: 9789201079077

DOWNLOAD EBOOK

Presents a survey of worldwide experience gained with fast breeder reactor design, development and operation. Coverage includes state of the art of liquid metal fast reactor development; lead-bismuth cooled (LBC) ship reactor operation experience and LBC fast power reactor development; and treatment and disposal of spent sodium.


Introduction to Corrosion Science

Introduction to Corrosion Science

Author: E. McCafferty

Publisher: Springer Science & Business Media

Published: 2010-01-04

Total Pages: 583

ISBN-13: 1441904549

DOWNLOAD EBOOK

This textbook is intended for a one-semester course in corrosion science at the graduate or advanced undergraduate level. The approach is that of a physical chemist or materials scientist, and the text is geared toward students of chemistry, materials science, and engineering. This textbook should also be useful to practicing corrosion engineers or materials engineers who wish to enhance their understanding of the fundamental principles of corrosion science. It is assumed that the student or reader does not have a background in electrochemistry. However, the student or reader should have taken at least an undergraduate course in materials science or physical chemistry. More material is presented in the textbook than can be covered in a one-semester course, so the book is intended for both the classroom and as a source book for further use. This book grew out of classroom lectures which the author presented between 1982 and the present while a professorial lecturer at George Washington University, Washington, DC, where he organized and taught a graduate course on “Environmental Effects on Materials.” Additional material has been provided by over 30 years of experience in corrosion research, largely at the Naval Research Laboratory, Washington, DC and also at the Bethlehem Steel Company, Bethlehem, PA and as a Robert A. Welch Postdoctoral Fellow at the University of Texas. The text emphasizes basic principles of corrosion science which underpin extensions to practice.


Handbook of Preparative Inorganic Chemistry

Handbook of Preparative Inorganic Chemistry

Author: Georg Brauer

Publisher:

Published: 1963

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Preparative methods. Elements and compounds. Hydrogen, deuterium, water. Hydrogen peroxide. Fluorine, hydrogen fluoride. Fluorine compounds. Chlorine, bromine, iodine. Oxygen, ozone. Sulfur, selenium, tellurium. Nitrogen. Phosphorus. Arsenic, antimony, bismuth. Carbon. Silicon and germanium. Tin and lead. Boron. Aluminum. Gallium, indium, thallium. Alkaline earth metals. Alkali metals. Copper, silver, gold. Zinc, cadmium, mercury. Scandium, yttrium, rare earths. Titanium, zirconium, hafnium, thorium. Vanadium, niobium, tantalum. Chromium, molybdenum, tungsten, uranium. Manganese. Rhenium. Iron. Cobalt, nickel. The platinum metals. Adsorbents and catalysts. Hydroxo salts. Iso - and heteropoly acids and their salts. Carbonyl and nitrosyl compounds. Alloys and intermetallic compounds.