A Practical Guide to Handling Laser Diode Beams

A Practical Guide to Handling Laser Diode Beams

Author: Haiyin Sun

Publisher:

Published: 2015

Total Pages:

ISBN-13: 9789401797849

DOWNLOAD EBOOK

This book offers the reader a practical guide to the control and characterization of laser diode beams. Laser diodes are the most widely used lasers, accounting for 50% of the global laser market. Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens. The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams. The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth measurement techniques. The book is a significantly revised and expanded version of the title Laser Diode Beam Basics, Manipulations and Characterizations by the same author. New topics introduced in this volume include: laser diode types and working principles, non-paraxial Gaussian beam, Zemax modeling, numerical analysis of a laser diode beam, spectral property characterization methods, and power and energy characterization techniques. The book approaches the subject in a practical way with mathematical content kept to the minimum level required, making the book a convenient reference for laser diode users.


A Practical Guide to Handling Laser Diode Beams

A Practical Guide to Handling Laser Diode Beams

Author: Haiyin Sun

Publisher: Springer

Published: 2015-02-20

Total Pages: 147

ISBN-13: 9401797838

DOWNLOAD EBOOK

This book offers the reader a practical guide to the control and characterization of laser diode beams. Laser diodes are the most widely used lasers, accounting for 50% of the global laser market. Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens. The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams. The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth measurement techniques. The book is a significantly revised and expanded version of the title Laser Diode Beam Basics, Manipulations and Characterizations by the same author. New topics introduced in this volume include: laser diode types and working principles, non-paraxial Gaussian beam, Zemax modeling, numerical analysis of a laser diode beam, spectral property characterization methods, and power and energy characterization techniques. The book approaches the subject in a practical way with mathematical content kept to the minimum level required, making the book a convenient reference for laser diode users.


A New Generation of Ultrafast Oscillators for Mid-Infrared Applications

A New Generation of Ultrafast Oscillators for Mid-Infrared Applications

Author: Nathalie Nagl

Publisher: Springer Nature

Published: 2022-02-01

Total Pages: 155

ISBN-13: 3030897540

DOWNLOAD EBOOK

This thesis presents the first successful realization of a compact, low-noise, and few-cycle light source in the mid-infrared wavelength region. By developing the technology of pumping femtosecond chromium-doped II-VI laser oscillators directly with the emission of broad-stripe single-emitter laser diodes, coherent light was generated with exceptionally low amplitude noise — crucial for numerous applications including spectroscopy at high sensitivities. Other key parameters of the oscillator's output, such as pulse duration and output power, matched and even surpassed previous state-of-the-art systems. As a demonstration of its unique capabilities, the oscillator's powerful output was used to drive — without further amplification — the nonlinear generation of coherent mid-infrared light spanning multiple octaves. The resulting table-top system uniquely combines high brilliance and ultrabroad spectral bandwidth in the important mid-infrared spectral range. The rapid development of this technology is comprehensively and lucidly documented in this PhD thesis. Together with a thorough review of literature and applications, and an extensive analysis of the theoretical foundations behind ultrafast laser oscillators, the thesis will serve as a valuable reference for the construction of a new generation of mid-infrared light sources.


A Practical Guide to Optical Microscopy

A Practical Guide to Optical Microscopy

Author: John Girkin

Publisher: CRC Press

Published: 2019-06-14

Total Pages: 234

ISBN-13: 1351630350

DOWNLOAD EBOOK

Choice Recommended Title, March 2020 Optical microscopy is used in a vast range of applications ranging from materials engineering to in vivo observations and clinical diagnosis, and thanks to the latest advances in technology, there has been a rapid growth in the number of methods available. This book is aimed at providing users with a practical guide to help them select, and then use, the most suitable method for their application. It explores the principles behind the different forms of optical microscopy, without the use of complex maths, to provide an understanding to help the reader utilise a specific method and then interpret the results. Detailed physics is provided in boxed sections, which can be bypassed by the non-specialist. It is an invaluable tool for use within research groups and laboratories in the life and physical sciences, acting as a first source for practical information to guide less experienced users (or those new to a particular methodology) on the range of techniques available. Features: The first book to cover all current optical microscopy methods for practical applications Written to be understood by a non-optical expert with inserts to provide the physical science background Brings together conventional widefield and confocal microscopy, with advanced non-linear and super resolution methods, in one book To learn more about the author please visit here.


A Practical Guide to Laboratory Optics

A Practical Guide to Laboratory Optics

Author: Andri M. Gretarsson

Publisher: Cambridge University Press

Published: 2021-06-03

Total Pages: 229

ISBN-13: 1108488854

DOWNLOAD EBOOK

Learn the essential skills of laboratory optics and its underlying theoretical framework with seven key experiments.


A Practical Guide to Geometric Regulation for Distributed Parameter Systems

A Practical Guide to Geometric Regulation for Distributed Parameter Systems

Author: Eugenio Aulisa

Publisher: CRC Press

Published: 2015-06-18

Total Pages: 1266

ISBN-13: 1420061356

DOWNLOAD EBOOK

A Practical Guide to Geometric Regulation for Distributed Parameter Systems provides an introduction to geometric control design methodologies for asymptotic tracking and disturbance rejection of infinite-dimensional systems. The book also introduces several new control algorithms inspired by geometric invariance and asymptotic attraction for a wide range of dynamical control systems. The first part of the book is devoted to regulation of linear systems, beginning with the mathematical setup, general theory, and solution strategy for regulation problems with bounded input and output operators. The book then considers the more interesting case of unbounded control and sensing. Mathematically, this case is more complicated and general theorems in this area have become available only recently. The authors also provide a collection of interesting linear regulation examples from physics and engineering. The second part focuses on regulation for nonlinear systems. It begins with a discussion of theoretical results, characterizing solvability of nonlinear regulator problems with bounded input and output operators. The book progresses to problems for which the geometric theory based on center manifolds does not directly apply. The authors show how the idea of attractive invariance can be used to solve a series of increasingly complex regulation problems. The book concludes with the solutions of challenging nonlinear regulation examples from physics and engineering.


Practical Introduction to Laser Dermatology

Practical Introduction to Laser Dermatology

Author: Vishal Madan

Publisher: Springer Nature

Published: 2020-08-15

Total Pages: 265

ISBN-13: 3030464512

DOWNLOAD EBOOK

This title introduces readers to the use of lasers in dermatology/aesthetic practice and focuses on the fundamentals of lasers and light-based devices and their clinical application. Each chapter addresses the use of lasers in the treatment of a variety of skin conditions, detailing mechanisms of action, pre-treatment preparation, post-treatment advice, follow-up, and potential complications and pitfalls. Besides discussing ablative, vascular, pigment-specific and epilation lasers, and intense pulsed light, the book also reviews the use of light-emitting diodes, low-level laser therapy and radio frequency devices. In addition, cosmeceuticals complementing laser treatments are also discussed. Readers will also find the chapter on self-assessment questionnaires especially useful. Practical Introduction to Laser Dermatology provides detailed explanation of the topics, while the chapters are supported by illustrative case studies that will enable readers to develop a deeper understanding of the subject of lasers in dermatology. Using clinically relevant Illustrations, it provides a comprehensive resource on a variety of laser technologies for novice readers and trained laser clinicians.


Semiconductor Laser Engineering, Reliability and Diagnostics

Semiconductor Laser Engineering, Reliability and Diagnostics

Author: Peter W. Epperlein

Publisher: John Wiley & Sons

Published: 2013-01-25

Total Pages: 522

ISBN-13: 1118481860

DOWNLOAD EBOOK

This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performance- and reliability-impacting factors such as temperature, stress and material instabilities. Further key features include: practical design guidelines that consider also reliability related effects, key laser robustness factors, basic laser fabrication and packaging issues; detailed discussion of diagnostic investigations of diode lasers, the fundamentals of the applied approaches and techniques, many of them pioneered by the author to be fit-for-purpose and novel in the application; systematic insight into laser degradation modes such as catastrophic optical damage, and a wide range of technologies to increase the optical strength of diode lasers; coverage of basic concepts and techniques of laser reliability engineering with details on a standard commercial high power laser reliability test program. Semiconductor Laser Engineering, Reliability and Diagnostics reflects the extensive expertise of the author in the diode laser field both as a top scientific researcher as well as a key developer of high-power highly reliable devices. With invaluable practical advice, this new reference book is suited to practising researchers in diode laser technologies, and to postgraduate engineering students.


Practical Guide to Materials Characterization

Practical Guide to Materials Characterization

Author: Khalid Sultan

Publisher: John Wiley & Sons

Published: 2022-09-08

Total Pages: 228

ISBN-13: 352783883X

DOWNLOAD EBOOK

Practical Guide to Materials Characterization Practice-oriented resource providing a hands-on overview of the most relevant materials characterization techniques in chemistry, physics, engineering, and more Practical Guide to Materials Characterization focuses on the most widely used experimental approaches for structural, morphological, and spectroscopic characterization of materials, providing background, insights on the correct usage of the respective techniques, and the interpretation of the results. With a focus on practical applications, the work illustrates what to use and when, including real-life examples showing which characterization techniques are best suited for particular purposes. Furthermore, the work covers the practical elements of the analytical techniques used to characterize a wide range of functional materials (both in bulk as well as thin film form) in a simple but thorough manner. To aid in reader comprehension, Practical Guide to Materials Characterization is divided into eight distinct chapters. To set the stage, the first chapter of the book reviews the fundamentals of materials characterization that are necessary to understand and use the methods presented in the ensuing chapters. Among the techniques covered are X-ray diffraction, Raman spectroscopy, X-ray spectroscopy, electron microscopies, magnetic measurement techniques, infrared spectroscopy, and dielectric measurements. Specific sample topics covered in the remaining seven chapters include: Bragg’s Law, the Von Laue Treatment, Laue’s Equation, the Rotating Crystal Method, the Powder Method, orientation of single crystals, and structure of polycrystalline aggregates Classical theory of Raman scattering, quantum theory of Raman spectroscopy, high-pressure Raman spectroscopy, and surface enhanced Raman spectroscopy Basic principles of XAS, energy referencing, XPS spectra and its features, Auger Electron Spectroscopy (AES), and interaction of electrons with matter Magnetization measuring instruments, the SQUID magnetometer, and the advantages and disadvantages of vibrating sample magnetometer (VSM) With comprehensive and in-depth coverage of the subject, Practical Guide to Materials Characterization is a key resource for practicing professionals who wish to better understand key concepts in the field and seamlessly harness them in a myriad of applications across many different industries.


Lens Design

Lens Design

Author: Haiyin Sun

Publisher: CRC Press

Published: 2016-12-19

Total Pages: 450

ISBN-13: 1351722247

DOWNLOAD EBOOK

A Practical Guide to Lens Design focuses on the very detailed practical process of lens design. Every step from setup specifications to finalizing the design for production is discussed in a straight forward, tangible way. Design examples of several widely used modern lenses are provided. Optics basics are introduced and basic functions of Zemax are described. Zemax will be used throughout the book.