Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (§1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (§3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non· Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Moritz Pasch (1843-1930) is justly celebrated as a key figure in the history of axiomatic geometry. Less well known are his contributions to other areas of foundational research. This volume features English translations of 14 papers Pasch published in the decade 1917-1926. In them, Pasch argues that geometry and, more surprisingly, number theory are branches of empirical science; he provides axioms for the combinatorial reasoning essential to Hilbert’s program of consistency proofs; he explores "implicit definition" (a generalization of definition by abstraction) and indicates how this technique yields an "empiricist" reconstruction of set theory; he argues that we cannot fully understand the logical structure of mathematics without clearly distinguishing between decidable and undecidable properties; he offers a rare glimpse into the mind of a master of axiomatics, surveying in detail the thought experiments he employed as he struggled to identify fundamental mathematical principles; and much more. This volume will: Give English speakers access to an important body of work from a turbulent and pivotal period in the history of mathematics, help us look beyond the familiar triad of formalism, intuitionism, and logicism, show how deeply we can see with the help of a guide determined to present fundamental mathematical ideas in ways that match our human capacities, will be of interest to graduate students and researchers in logic and the foundations of mathematics.