Structural Econometric Models

Structural Econometric Models

Author: Eugene Choo

Publisher: Emerald Group Publishing

Published: 2013-12-18

Total Pages: 447

ISBN-13: 1783500530

DOWNLOAD EBOOK

This volume focuses on recent developments in the use of structural econometric models in empirical economics. The first part looks at recent developments in the estimation of dynamic discrete choice models. The second part looks at recent advances in the area empirical matching models.


Handbook of Industrial Organization

Handbook of Industrial Organization

Author:

Publisher: Elsevier

Published: 2021-12-09

Total Pages: 788

ISBN-13: 0323915140

DOWNLOAD EBOOK

Handbook of Industrial Organization, Volume Four highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of expert authors. - Presents authoritative surveys and reviews of advances in theory and econometrics - Reviews recent research on capital raising methods and institutions - Includes discussions on developing countries


Econometric Models For Industrial Organization

Econometric Models For Industrial Organization

Author: Matthew Shum

Publisher: World Scientific

Published: 2016-12-14

Total Pages: 154

ISBN-13: 981310967X

DOWNLOAD EBOOK

Economic Models for Industrial Organization focuses on the specification and estimation of econometric models for research in industrial organization. In recent decades, empirical work in industrial organization has moved towards dynamic and equilibrium models, involving econometric methods which have features distinct from those used in other areas of applied economics. These lecture notes, aimed for a first or second-year PhD course, motivate and explain these econometric methods, starting from simple models and building to models with the complexity observed in typical research papers. The covered topics include discrete-choice demand analysis, models of dynamic behavior and dynamic games, multiple equilibria in entry games and partial identification, and auction models.


Finite Mixture and Markov Switching Models

Finite Mixture and Markov Switching Models

Author: Sylvia Frühwirth-Schnatter

Publisher: Springer Science & Business Media

Published: 2006-11-24

Total Pages: 506

ISBN-13: 0387357688

DOWNLOAD EBOOK

The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.


Using Discrete Choice Experiments to Value Health and Health Care

Using Discrete Choice Experiments to Value Health and Health Care

Author: Mandy Ryan

Publisher: Springer Science & Business Media

Published: 2007-10-23

Total Pages: 265

ISBN-13: 1402057539

DOWNLOAD EBOOK

This work takes a fresh and contemporary look at the growing interest in the development and application of discrete choice experiments (DCEs) within the field of health economics. The book comprises chapters by highly regarded academics with experience of applying DCEs in the area of health. Thus the book is relevant to post-graduate students and applied researchers with an interest in the use of DCEs for valuing health and health care and has international appeal.


Discrete Choice Modelling and Air Travel Demand

Discrete Choice Modelling and Air Travel Demand

Author: Professor Laurie A Garrow

Publisher: Ashgate Publishing, Ltd.

Published: 2012-10-01

Total Pages: 327

ISBN-13: 1409486338

DOWNLOAD EBOOK

In recent years, airline practitioners and academics have started to explore new ways to model airline passenger demand using discrete choice methods. This book provides an introduction to discrete choice models and uses extensive examples to illustrate how these models have been used in the airline industry. These examples span network planning, revenue management, and pricing applications. Numerous examples of fundamental logit modeling concepts are covered in the text, including probability calculations, value of time calculations, elasticity calculations, nested and non-nested likelihood ratio tests, etc. The core chapters of the book are written at a level appropriate for airline practitioners and graduate students with operations research or travel demand modeling backgrounds. Given the majority of discrete choice modeling advancements in transportation evolved from urban travel demand studies, the introduction first orients readers from different backgrounds by highlighting major distinctions between aviation and urban travel demand studies. This is followed by an in-depth treatment of two of the most common discrete choice models, namely the multinomial and nested logit models. More advanced discrete choice models are covered, including mixed logit models and generalized extreme value models that belong to the generalized nested logit class and/or the network generalized extreme value class. An emphasis is placed on highlighting open research questions associated with these models that will be of particular interest to operations research students. Practical modeling issues related to data and estimation software are also addressed, and an extensive modeling exercise focused on the interpretation and application of statistical tests used to guide the selection of a preferred model specification is included; the modeling exercise uses itinerary choice data from a major airline. The text concludes with a discussion of on-going customer modeling research in aviation. Discrete Choice Modelling and Air Travel Demand is enriched by a comprehensive set of technical appendices that will be of particular interest to advanced students of discrete choice modeling theory. The appendices also include detailed proofs of the multinomial and nested logit models and derivations of measures used to represent competition among alternatives, namely correlation, direct-elasticities, and cross-elasticities.


Handbook of Choice Modelling

Handbook of Choice Modelling

Author: Stephane Hess

Publisher: Edward Elgar Publishing

Published: 2014-08-29

Total Pages: 721

ISBN-13: 1781003157

DOWNLOAD EBOOK

The Handbook of Choice Modelling, composed of contributions from senior figures in the field, summarizes the essential analytical techniques and discusses the key current research issues. The book opens with Nobel Laureate Daniel McFadden calling for d


Generalized Additive Models

Generalized Additive Models

Author: Simon Wood

Publisher: CRC Press

Published: 2006-02-27

Total Pages: 412

ISBN-13: 1584884746

DOWNLOAD EBOOK

Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.


Bayesian Nonparametric Data Analysis

Bayesian Nonparametric Data Analysis

Author: Peter Müller

Publisher: Springer

Published: 2015-06-17

Total Pages: 203

ISBN-13: 3319189689

DOWNLOAD EBOOK

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.


Panel Data Econometrics

Panel Data Econometrics

Author: Mike Tsionas

Publisher: Academic Press

Published: 2019-06-19

Total Pages: 434

ISBN-13: 0128144319

DOWNLOAD EBOOK

Panel Data Econometrics: Theory introduces econometric modelling. Written by experts from diverse disciplines, the volume uses longitudinal datasets to illuminate applications for a variety of fields, such as banking, financial markets, tourism and transportation, auctions, and experimental economics. Contributors emphasize techniques and applications, and they accompany their explanations with case studies, empirical exercises and supplementary code in R. They also address panel data analysis in the context of productivity and efficiency analysis, where some of the most interesting applications and advancements have recently been made. - Provides a vast array of empirical applications useful to practitioners from different application environments - Accompanied by extensive case studies and empirical exercises - Includes empirical chapters accompanied by supplementary code in R, helping researchers replicate findings - Represents an accessible resource for diverse industries, including health, transportation, tourism, economic growth, and banking, where researchers are not always econometrics experts